GEOLOGI FOR SAMFUNNET

SIDEN 1858

NGU RAPPORT 2024.027

Mareano 2023: Sedimentkarakteristikk, uorganiske miljøgifter og dateringsresultater i områdene Kystbeltet øst for Utsira Nord, NSJ-1 (sørlige Nordsjø) og Skagerrak

NGU RAPPORT

Geologi for samfunnet – kunnskap for framtida

Norges geologiske undersøkelse Postboks 6315 Torgarden 7491 Trondheim Tlf. 73 90 40 00

Rapport nr: 2024.027 ISSN: 0800-3416 (trykt) ISSN: 2387-3515 (online) Gradering: Åpen

Tittel: Mareano 2023: Sedimentkarakteristikk, uorganiske miljøgifter og dateringsresultater i områdene Kystbeltet øst for Utsira Nord, NSJ-1 (sørlige Nordsjø) og Skagerrak Forfatter: Henning K.B. Jensen, Ana Banica og Valérie K. Bellec **Oppdragsgiver: Mareano** Fylke: Kommune: Kartblad: (M=1:250.000): Kartbladnr. og -navn: (M=1:50.000): Forekomstens navn og koordinater: Sidetall: 84 Pris: 315 Feltarbeid utført: 2023 Rapportdato: 31.01.2025 Prosiektnr: 311730 Ansvarlig: Reiduly Bøe Emneord: Maringeologi, Mareano, geokjemi, prøvetaking, datering, sediment, forurensing, tungmetall

Sammendrag: På Mareano-toktene 2023001005 og 2023001009 (FF G.O. Sars) i 2023 ble det tatt sedimentkjerner fra totalt 11 stasjoner i Nordsjøen i Mareano-områdene Kystbeltet (KB) øst for Utsira Nord, NSJ-1 i sørlige Nordsjø, samt NS-SK-Sør_UT-1 og NS-SK-Nord_IT-1 i Skagerrak. Sedimentene består av silt i Skagerrak, mens prøvene fra Kystbeltet øst for Utsira Nord består av sandholdig silt. Den ene stasjonen fra sørlige Nordsjø NSJ-1, består av siltholdig sand. TOC-verdiene i overflatesedimentene i Skagerrak varierer fra i underkant av 2 vektprosent til 2,4 vektprosent. Andel karbonat utgjør 10 – 15 vektprosent. Resultatene av de geokjemiske analysene av overflatesedimenter viser høye konsentrasjoner for As i prøvene fra Skagerrak, tilsvarende Miljødirektoratets tilstandsklasse III. For de øvrige metallene Cd, Cu, Cr, Hg, Ni, Pb og Zn er nivåene lave, tilsvarende tilstandsklasse I eller II.

Analyser av 5 sedimentkjerner fra Kystbeltet øst for Utsira og Skagerrak viser at det er stabile avsetningsforhold med stabile kornstørrelsesfordelinger, TOC og andel karbonat. Røntgeninspeksjon av sedimentkjerner viser at de er bioturbert. ²¹⁰Pb-dateringsanalysene av sedimentkjerner fra Skagerrak viser høye til meget høye sedimentasjonsrater på 1,7 millimeter/år og 2,7 millimeter/år i NS-SK-Sør_UT-1 og 20 millimeter/år i NS-SK-Nord_IT-1. Dateringsanalysene fra den sistnevnte kjernen anses for å være upålitelige pga. sannsynlig påvirkning fra tråling. En datert sedimentkjerne fra Kystbeltet øst for Utsira har en sedimentasjonsrate på 0,6 millimeter/år.

Tungmetallene Hg og Pb viser en økning mot nåtid i 4 av de 5 analyserte sedimentkjernene. Økningen skyldes sannsynligvis menneskelig aktivitet knyttet til bruk av fossile energikilder, og muligvis også utslipp til det marine miljøet fra kjemisk industri og treforedling. Tidsmessig skjer økningen rundt år 1900, når resultatene ses opp mot dateringsresultatene fra ²¹⁰Pb-analysene. Økning i Hg kan muligvis også tilskrives kjemisk industri og treforedling med utslipp til det marine miljøet.

Ba har anrikning i overflatesedimentene i Skagerrak (NS-SK-Sør_UT-1). Dette tyder på tilførsel i nyere tid, med en anrikning som er 3-4 ganger høyere i forhold til bakgrunnsnivået. Økningen i Ba-konsentrasjoner skyldes mest sannsynlig tilførsel av barytt tilsatt boreslam, og ført med havstrømmer fra Nordsjøen, hvor boring etter gass og olje begynte tidlig på 1970-tallet. Alle øvrige metaller (Cd, Cr, Cu, Ni og Zn) er til stede med stabile konsentrasjoner i kjernene. Det tyder på at det primært er naturlige bidrag. As øker i overflatesedimentene, spesielt i Skagerrak.

INNHOLD

1	INNL	EDNING	10
2	TOK	T OG PRØVETAKING	10
3	MET	ODER FOR TESTING OG ANALYSE	15
3.1	Uti	tak av prøver til analyser	16
3.2	An	alyser ved NGUs laboratorium	17
3	.2.1	Kjemiske analyser	17
3	.2.2	XRI røntgeninspeksjon	17
3.3	An	alyser ved eksterne laboratorier	17
3	.3.1	Kornfordelingsanalyser	17
3	.3.2	Analyse av radioaktive isotoper ²¹⁰ Pb og ¹³⁷ Cs	18
3.4	Ru	itiner for kvalitetskontroll	18
3.5	Kv	antifiseringsgrenser	18
4	RES	ULTATER	19
4.1	Ba	kgrunnsinformasjon	19
4	.1.1	Sedimentklassifikasjon etter kornstørrelse	19
4	.1.2	Beregning av vektprosent karbonat	19
4.2	Ov	/erflateprøver	19
4	.2.1	Kornstørrelsesfordeling, organisk karbon, karbonat og svovel	20
4	.2.2	Tungmetaller, barium og cesium-137 (¹³⁷ Cs)	26
4.3	Se	dimentkjerner	
4	.3.1	Visuell bedømmelse og XRI-analyser	
4	.3.2	Kornstørrelsesfordeling	63
4	.3.3	Total organisk karbon, karbonat og svovel	64
4	.3.4	Blyisotop 210 (²¹⁰ Pb), cesiumisotop 137 (¹³⁷ Cs) og akkumulasjonsrater	66
4	.3.5	Tungmetaller, arsen og barium i sedimentkjerner	75
5	OPP	SUMMERING	83
6	REF	ERANSER	83

Vedlegg

Følgende supplerende dokumentasjon kan lastes ned fra www.mareano.no/resultater/geokjemirapporter

Vedlegg 1: Prøveliste og analyseresultater fra NGUs laboratorium (ref. analyserapport 2024.0024): kornstørrelsesfordeling (Coulter), Leco (total S, total C og organisk C), HNO₃-ekstrahert og analysert med CV-AAS (Hg) og ICP-OES (As, Ba, Cd, Cr, Cu, Ni, Pb og Zn). Data for naturlige standarder følger med i analyserapportene.

Vedlegg 2: ²¹⁰Pb- og ¹³⁷Cs-analyserapporter fra fire sedimentkjerner. Rapportene er levert av Gamma Dating Center, Københavns Universitet, Danmark.

Tabell med forkortelser benyttet i rapporten.

Forkortelse (i alfabetisk rekkefølge)	Forklaring
Bq	Becquerel
CV-AAS	Atomabsorbsjonsanalyse av kvikksølv (Hg) med kalddampteknikk (CV-AAS) (EN: Cold Vapour Atomic Absorption Spectrometry)
ICP-OES	Induktivt koblet plasma optisk emisjonspektrometri (EN: Inductively Coupled Plasma Optical Emission Spectrometry)
i.k.	Ikke kvantifiserbar
KB	Kystbeltet
LLQ	Nedre kvantifiseringsgrense (EN: Lower Limit of Quantification)
LPS	Laser partikkelteller (EN: Laser Particle Size analysis)
LSR	Lineær sedimentasjonsrate
LT63	Andel finstoff (<63 µm)
Maks	Maksimum verdi i et datasett
Min	Minimum verdi i et datasett
N/A	Ikke tilgjengelig (EN: Not Available)
PVC	Polyvinylklorid (EN: Polyvinyl chloride)
TC	Totalt karbon
TOC	Totalt organisk karbon
TS	Total svovel
vekt%	Vektprosent
XRI	Røntgen inspeksjon (EN: X-Ray Imaging)

Liste over tabeller

Tabell 1. Prøvetakingsstasjoner	10
Tabell 2. Beskrivelse av prøvetakingsutstyr, kjernelengde for den dypeste prøve tatt til analyse og antall prøver til de ulike analysene.	11
Tabell 3. Oversikt over analyserte parametere på overflateprøver og sedimentkjerner. For detaljert beskrivelse av analysemetoder henvises det til kap. 3.	11
Tabell 4. Beskrivelse av analysemetoder, utstyr og instrumenter. LLQ: nedre kvantifiseringsgrense	15
Tabell 5. Beskrivelse av metoder for kornfordelingsanalyse.	16
Tabell 6. Sedimentklassifikasjon etter kornstørrelser for sedimenter, som anvendes for kjemiske analyser.Klassifikasjonen er i henhold til NGUs sedimentklassifikasjon.	19
Tabell 7. Kornstørrelsesfordeling og sedimentklassifikasjon for overflateprøvene (0-1 cm dybde)	22
Tabell 8. Vurdering av overflateprøver fra 2023-toktene (11 stasjoner) i henhold til Miljødirektoratets tilstandsklasser for marine sedimenter. Uthevet skrift viser antall overflateprøver i hver av klassene I-V.	27
Tabell 9: Kjerner med XRI-bilder fra tokt i 2023, med henvisning til andre analyser utført på kjerner fra samme stasjoner.	50
Tabell 10. Daterte sedimentkjerner fra MAREANO-tokt i 2023. LSR: Lineær sedimentasjonsrate for intervaller karakterisert som pålitelige basert på ²¹⁰ Pb-aktivitetskurver. Dateringskvalitet karakteriseres av aldersmodeller som viser en tydelig eksponentiell nedgang av ²¹⁰ Pb-aktivitet og langsom utflating av ¹³⁷ Cs-konsentrasjon	73
Tabell 11. Sedimentkjerne R3200MC07 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.k.: ikke kvantifiserbar.	76
Tabell 12. Sedimentkjerne R3310MC1 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. I.k.: ikke kvantifiserbar	77
Tabell 13. Sedimentkjerne R3328MC12 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.k.: ikke kvantifiserbar.	79
Tabell 14. Sedimentkjerne R3345MC14 (0-43 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium.	80
Tabell 15. Sedimentkjerne R3365MC15 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium.	82

Liste over figurer

Figur 1.	Kart over alle prøvetakingsstasjoner i Mareano-programmet i perioden 2006–2023, inkludert stasjoner fra 2003 og 2004 (HI-tokt). Områdene hvor de 11 stasjonene er tatt på toktene 2023001005 og 2023001009 i 2023 vises innenfor den røde firkanten i Nordsjøen. Det er brukt ulike symboler for å skille mellom stasjoner fra 2023 og tidligere stasjoner. Stasjonsnumrene fra 2023-toktene vises i Figur 2.	12
Figur 2.	Stasjonsnumrene fra 2023-toktene, områdene Kystbeltet (KB) øst for Utsira Nord, Skagerrak og NSJ-1	13
Figur 3.	Multicorer med seks rør, hvorav to sedimentkjerner i gjennomsiktige PVC-rør går til kjemiske analyser og to sedimentkjerner i stålrør i midten går til mikroplastanalyse. Prøvetakingen på bildet er fra stasjon R3188, KB øst for Utsira Nord, tokt 2023001005	13
Figur 4.	Sedimentkjerne «A» stående i MC-prøvetakeren tatt i PVC-rør på stasjon R3200 i Kystbeltet øst for Utsira Nord, tokt 2023001005. Røret er 60 cm langt og sedimentkjernen med uforstyrret overflate har en klar vannsøyle over sedimentene. Dermed er kjernen godkjent for bruk til uorganiske kjemiske analyser. For bilde av multicorer se Figur 3.	14
Figur 5.	Sedimentkjerne «F» stående i MC-prøvetakeren tatt i stålrør på stasjon R3196 i KB øst for Utsira Nord på tokt 2023001005. For bilde av multicorer se Figur 3. Gul-lappen er 7,5x12,5 cm.	14
Figur 6.	Toppen av sedimentkjerne «A» med vannmettet overflate før sedimentkjernen deles opp i 1-cm- tykke skiver til uorganisk kjemisk analyse. De øverste centimeterne i sedimentkjernen har høyt vanninnhold, derfor flyter noe av prøven utover kanten på røret. Prøven er fra stasjon R3365 fra Skagerrak, tokt 2023001009	17
Figur 7.	Andel finstoff (partikler med kornstørrelse < 63 µm) i overflateprøvene fra 2023-toktene. Prøvene fra 2023- stasjonene er markert med rød ring innenfor den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 8	21
Figur 8.	Andel finstoff (partikler med kornstørrelse < 63 µm) i overflateprøver i havområdet vist som kartutsnitt i Figur 7. Prøvene fra 2023-toktene (områdene Kystbeltet (KB) øst for Utsira Nord, Skagerrak og NSJ-1 er markert med rød ring.	22
Figur 9.	TOC-konsentrasjon (vekt% TOC) i overflateprøver. Prøvene fra 2023-toktene er markert med rød ring innenfor den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 10.	23
Figur 10). TOC-konsentrasjon (vekt% TOC) i overflateprøver i havområdet vist som kartutsnitt i Figur 9. Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	24
Figur 11	. Karbonat-konsentrasjon (vekt% karbonat) i overflateprøver. Prøvene fra 2023-toktene i Nordsjøen er vist med rød ring i den røde firkanten. Detaljert kart vises i Figur 12.	25
Figur 12	2. Karbonat-konsentrasjon (vekt% karbonat) i overflateprøver i havområdene vist som kartutsnitt i Figur 11. Prøvene fra 2023-toktene i områdene KB øst for Utsira Nord, Skagerrak og NSJ-1 er markert med rød ring	26
Figur 13	B. Arsen-konsentrasjon (mg/kg As) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<15 mg/kg As). Grønne punkt angir tilstandsklasse II (15-18 mg/kg As). Gule punkt angir tilstandsklasse III (18-71 mg/kg As). Oransje punkt angir tilstandsklasse IV (71-580 mg/kg As). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 14.	30
Figur 14	I. Arsen-konsentrasjon (mg/kg As) i overflateprøver i kartutsnittet i Figur 13. Blå prøvepunkter angir tilstandsklasse I (<15 mg/kg As). Grønne punkt angir tilstandsklasse II (15-18 mg/kg As). Gule punkt angir tilstandsklasse III (18-71 mg/kg As). Oransje punkt angir tilstandsklasse IV (71-580 mg/kg As). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	31
Figur 15	5. Bly-konsentrasjon (mg/kg Pb) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<25 mg/kg Pb). Grønne punkt angir tilstandsklasse II (25-150 mg/kg Pb). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 16.	32
Figur 16	 Bly-konsentrasjon (mg/kg Pb) i overflateprøver i kartutsnittet i Figur 15. Blå prøvepunkter angir tilstandsklasse I (<25 mg/kg Pb). Grønne punkt angir tilstandsklasse II (25-150 mg/kg Pb). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring 	33
Figur 17	⁷ . Kadmium-konsentrasjon (mg/kg Cd) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<0,2 mg/kg Cd). Grønne punkt angir tilstandsklasse II (0.2-2,5 mg/kg Cd). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 18.	34
Figur 18	B. Kadmium-konsentrasjon (mg/kg Cd) i overflateprøver i kartutsnittet i Figur 17. Blå prøvepunkter angir tilstandsklasse I (<0,2 mg/kg Cd). Grønne punkt angir tilstandsklasse II (0.2-2,5 mg/kg Cd). Prøvene fra 2023- toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	35
Figur 19	9. Kopper-konsentrasjon (mg/kg Cu) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<20 mg/kg Cu). Grønne punkt angir tilstandsklasse II (20-84 mg/kg Cu). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 20.	36
Figur 20). Kopper-konsentrasjon (mg/kg Cu) i overflateprøver i kartutsnittet i Figur 19. Blå prøvepunkter angir tilstandsklasse I (<20 mg/kg Cu). Grønne punkt angir tilstandsklasse II (20-84 mg/kg Cu). Prøvene fra 2023- toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	37
Figur 21	. Krom-konsentrasjon (mg/kg Cr) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<60 mg/kg Cr). Grønne punkt angir tilstandsklasse II (60-620 mg/kg Cr). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 22.	38

Figur 22. Krom-konsentrasjon (mg/kg Cr) i overflateprøver i kartutsnittet i Figur 21. Blå prøvepunkter angir tilstandsklasse I (<60 mg/kg Cr). Grønne punkt angir tilstandsklasse II (60-620 mg/kg Cr). Prøvene fra 2023- toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	- 39
Figur 23. Kvikksølv-konsentrasjon (mg/kg Hg) i overflateprøvene. Blå punkt angir tilstandsklasse I (<0,05 mg/kg Hg). Grønne punkt angir tilstandsklasse II (0,05 – 0,52 mg/kg Hg). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 24.	40
Figur 24. Kvikksølv-konsentrasjon (mg/kg Hg) i overflatesedimenter i kartutsnittet i Figur 23. Blå punkt angir tilstandsklasse I (<0,05 mg/kg Hg). Grønne punkt angir tilstandsklasse II (0,05 – 0,52 mg/kg Hg). Prøvene fr 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	a 41
Figur 25. Nikkel-konsentrasjon (mg/kg Ni) i overflateprøver. Blå punkt angir tilstandsklasse I (< 30 mg/kg Ni). Grønne punkter angir tilstandsklasse II (30 – 42 mg/kg Ni). Gule punkt angir tilstandsklasse III (42 – 271 mg/kg Ni). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figu 26.	ır 42
Figur 26. Nikkel-konsentrasjon (mg/kg Ni) i overflatesedimenter i kartutsnittet i Figur 25. Blå punkt angir tilstandsklass (<30 mg/kg Ni). Grønne punkter angir tilstandsklasse II (30-42 mg/kg Ni), og gule punkt angir tilstandsklasse (42-271 mg/kg Ni). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.	se I 9 III 43
Figur 27. Zink-konsentrasjon (mg/kg Zn) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<90 mg/kg Zn). Grønne punkt angir tilstandsklasse II (90-139 mg/kg Zn). Prøvene fra 2023-toktene er markert med rød ring den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 28.	i 44
Figur 28. Zink-konsentrasjon (mg/kg Zn) i overflatesedimenter i kartutsnittet i Figur 27. Blå prøvepunkter angir tilstandsklasse I (<90 mg/kg Zn). Grønne punkt angir tilstandsklasse II (90-139 mg/kg Zn). Prøvene fra 2023 toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	- 45
Figur 29. Barium-konsentrasjon (mg/kg Ba) i overflatesedimenter. Prøvene fra 2023-toktene er markert med rød ring den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 30.	i 46
Figur 30. Barium-konsentrasjon (mg/kg Ba) i overflatesedimenter fra kartutsnittet i Figur 29. Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring	ə 47
Figur 31. Konsentrasjon i radioaktivt cesium (mg/kg ¹³⁷ Cs) i overflatesedimenter. Prøver fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 32.	
Figur 32. Konsentrasjon i radioaktivt cesium (mg/kg ¹³⁷ Cs) i overflatesedimenter fra kartutsnittet i Figur 31. Prøvene fi 2023-toktepe (områdene KB øst for Utsira Nord og Skagerrak) er markert med rød ring	ra 49
Figur 33 XPL-bilde av sedimentkierne P3188MC05 KB øst for Utsira Nord Målestokk i cm-skala til venstre	
Figur 34. XRL-bilde av sedimentkjerne R3190MC09, KB øst for Utsira Nord. Malestokk i cm-skala til venstre	
Figur 35. XRI-bilde av sedimentkjerne R3196MC06. KB øst for Utsira Nord. Malestokk i cm-skala til venstre	
Figur 36. XRI-bilde av sedimentkjerne R3200MC07. KB øst for Utsira Nord. Målestokk i cm-skala til venstre	
Figur 37. XRI-bilde av sedimentkjerne R3224MC08, i NSJ-1, Målestokk i cm-skala til venstre	
Figur 38. XRI-bilde av sedimentkjerne R3303MC10, NS-SK-Sør UT-1, Skagerrak. Målestokk i cm-skala til venstre	
Figur 39. XRI-bilde av sedimentkjerne R3310MC11, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre	
Figur 40. XRI-bilde av sedimentkjerne R3328MC12, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre	59
Figur 41. XRI-bilde av sedimentkjerne R3333MC13, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm skala til venstre	60
Figur 42. XRI-bilde av sedimentkjerne R3345MC14, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre	61
Figur 43. XRI-bilde av sedimentkjerne R3365MC15, NS-SK-Nord_IT-1, Skagerrak. Målestokk i cm-skala til venstre	62
Figur 44. Kornstørrelsesfordeling med leir (<2 μm), silt (2-63 μm), sand (63-2000 μm) og grus (>2000 μm) i 5 sedimentkjerner.	64
Figur 45. Leco-analyser som viser total organisk karbon (TOC), karbonat og total svovel (TS) i vektprosent i 5 sedimentkjerner. X-skalaen (vektprosent) er logaritmisk.	65
Figur 46. Tetthet, unsupported ²¹⁰ Pb- og ¹³⁷ Cs-aktivitetsmålinger i R3200MC07, KB øst for Utsira Nord	67
Figur 47. Alder versus dyp i sedimentene i R3200MC07, KB øst for Utsira Nord.	67
Figur 48. ¹³⁷ Cs versus ²¹⁰ Pb-alder i R3200MC07, KB øst for Utsira Nord	68
Figur 49. Tetthet, unsupported ²¹⁰ Pb- og ¹³⁷ Cs-aktivitetsmålinger i R3310MC11, NS-SK-Sør_UT-1, Skagerrak	68
Figur 50. Alder versus dyp i sedimentene i R3310MC11, NS-SK-Sør_UT-1, Skagerrak	69
Figur 51. ¹³⁷ Cs versus ²¹⁰ Pb-alder i R3310MC11, NS-SK-Sør_UT-1, Skagerrak.	69
Figur 52. Tetthet, unsupported ²¹⁰ Pb- og ¹³⁷ Cs-aktivitetsmålinger i R3328MC12, NS-SK-Sør_UT-1, Skagerrak	70
Figur 53. Alder versus dyp i sedimentene i R3328MC12, NS-SK-Sør_UT-1, Skagerrak	70
Figur 54. ¹³⁷ Cs versus ²¹⁰ Pb-alder i R3328MC11, NS-SK-Sør_UT-1, Skagerrak.	71
Figur 55. Tetthet, ²¹⁰ Pb-unsupported og ¹³⁷ Cs-aktivitetsmålinger i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak	71
Figur 56. Alder versus dyp i sedimentene i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak	72

Figur 57. ¹³⁷ Cs versus ²¹⁰ Pb-alder i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak	.72
Figur 58.Sedimentasjonsrater basert på unsupported ²¹⁰ Pb-data i hele det kartlagte Mareano-området. Daterte sedimentkjerner fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 59.	.74
Figur 59. Sedimentasjonsrater i kartutsnittet vist i Figur 58. Stasjonene fra 2023-toktene (områdene KB øst for Utsira Nord og Skagerrak) er markert med rød ring.	.75
Figur 60. Tungmetall, arsen, barium, TOC, karbonat og finstoff i R3200MC07 (0-47 cm) fra KB øst for Utsira Nord. X- skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰ Pb-dateringsanalysene presentert i kap. 4.3.4.	.76
Figur 61. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R3310MC11 (0-47cm) fra NS-SK- Sør_UT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰ Pb- dateringsnalysene presentert i kap. 4.3.4.	.78
Figur 62. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjernen fra stasjon R3328MC12 (0-47 cm) fra NS-SK-Sør_UT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰ Pb-dateringsanalysene presentert i kap. 4.3.4.	.79
Figur 63. Tungmetall, arsen, barium, TOC, karbonat og finstoff i R3345MC14 (0-43 cm) fra NS-SK-Sør_UT-1 i Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk.	.81
Figur 64. Tungmetall, arsen, barium, TOC, karbonat og finstoff i den ²¹⁰ Pb-daterte sedimentkjernen R3365MC15 fra NS-SK-Nord_IT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰ Pb-dateringsanalysene presentert i kap. 4.3.4. Dateringen anses at være dårlig (avsnitt 4.3.4). Kjernelengden er 47 cm.	.82

1 INNLEDNING

MAREANO er et nasjonalt, tverrfaglig program for kartlegging av havbunnen i norske havområder, etablert i 2005. Data samlet inn gjennom programmet tilgjengeliggjøres for brukere i form av rapporter, kart og metadata på <u>https://www.mareano.no/resultater/geokjemirapporter</u>. Siden 2006 har NGU bidratt med sedimentologiske studier og kartlegging av uorganiske miljøgifter. Analyse av mikroplast har inngått i kartleggingsprogrammet siden 2016.

I henhold til <u>Mareano aktivitetsplan for 2023</u> ble prøver samlet inn fra områdene Kystbeltet (KB) øst for Utsira Nord, NSJ-1 i sørlige Nordsjø (ved siden av havvindområdet Sørlige Nordsjø II) og Skagerrak (NS-SK-Sør_UT-1 og NS-SK-Nord_IT-1). Prøvene, som omfatter sedimentkjerner og overflateprøver, ble tatt med multicorer (MC) fra 11 stasjoner. En oversikt over prøvestakingsstasjoner finnes i kap. 2 og Figur 1. For detaljerte toktrapporter fra 2023-toktene (2023001005 og 2023001009) henvises det til <u>https://www.mareano.no/resultater/toktrapporter-1/2023</u>.

Rapporten presenterer analyseresultatene for uorganiske miljøgifter (arsen, bly, kadmium, kopper, krom, kvikksølv, nikkel, zink), barium, kornstørrelse, total organisk karbon, totalkarbon og total svovel, samt karbonat. I tillegg rapporteres data fra datering (²¹⁰Pb og ¹³⁷Cs). Alle sedimentkjerner ble analysert med røntgen (XRI) for å undersøke sedimentasjonsprosesser og strukturer. Som følge av metodeutvikling ble XRI-undersøkelsene fra tokt-2023 utført på kjernene både i PVC- og stål-rør. En oversikt over utførte analyser per stasjon finnes i Tabell 2 og Tabell 3. Enkelte prøver var i tillegg analysert for mikroplast, som spesifisert i Tabell 3. For mikroplastanalysene vises det til en egen rapport, publisert på <u>https://www.mareano.no/resultater/geokjemirapporter</u>.

Rapporten inkluderer også informasjon om prosedyrer for prøvetaking og analysemetoder. En mer detaljert presentasjon finnes i metodedokumentet, som er tilgjengelig på <u>https://mareano.no/resources/Metodedokument-Kjemiprogram-2024.pdf</u>.

2 TOKT OG PRØVETAKING

Tabell 1 gir en oversikt over prøvetakingsstasjonene på toktene 2023001005 og 2023001009 med angivelse av havdyp og geografiske posisjoner. Kart i Figur 1 viser samtlige prøvetakingsstasjoner i perioden 2006-2022, mens Figur 2 gir en detaljert oversikt over stasjonene fra 2023-toktene med angivelse av stasjonsnumrene.

Stocion	Område	Geografiske k	koordinater	Houdun m	Prøvetakings- utstyr					
Stasjon	Omrade	Nord	Øst	пачаур, т						
Tokt 20230010	Tokt 2023001005									
R3188MC05	Kystbeltet øst for Utsira Nord	59.576102	4.930292	195.66	multicorer					
R3196MC06	Kystbeltet øst for Utsira Nord	59.118750	5.004571	235.77	multicorer					
R3200MC07	Kystbeltet øst for Utsira Nord	58.972521	5.092087	246.73	multicorer					
R3224MC08 NSJ-1		57.614178	6.034072	143.33	multicorer					
Tokt 20230010	09			•	•					
R3190MC09	Kystbeltet øst for Utsira Nord	59.332127	4.828920	205.23	multicorer					
R3303MC10	NS-SK-Sør_UT-1	58.172696	9.426370	634.79	multicorer					
R3310MC11	NS-SK-Sør_UT-1	58.369589	9.485299	585.81	multicorer					
R3328MC12	NS-SK-Sør_UT-1	58.230068	9.903919	482.32	multicorer					
R3333MC13	NS-SK-Sør_UT-1	58.440081	9.695871	696.25	multicorer					
R3345MC14	NS-SK-Sør_UT-1	58.468660	10.078356	516.81	multicorer					
R3365MC15	NS-SK_Nord_IT-1	58.377104	9.016832	311.38	multicorer					

Tabell 1. Prøvetakingsstasjoner.

Informasjon om prøvetakingsutstyr per stasjon samt antall prøver tatt ut til analyse fra hver stasjon er sammenstilt i Tabell 2. Prøvetakingsutstyret består av en multicorer med 4 PVC-rør og 2 stålrør med 110 millimeter indre diameter og 60 cm lengde (Figur 3 og Figur 4).

Oversikt over utførte analyser og målinger med angivelse av antall prøver per målte parametere vises i Tabell 3.

abell 2. Beskrivelse av prøvetakingsutstyr, kjernelengde for den dypeste prøve tatt til analyse og anta	
prøver til de ulike analysene.	

Stacion	Prøvetakings-	Kjerne til XRI,	Dyp i kje prøve	rne for den e e til analyser	dypeste , cm	Antall prøver til analyser		
Stasjon	utstyr	PVC- rør	Kjemiske analyser	Datering	MP	Kjemiske analyser	Datering	MP
R3188MC05	multicorer	ja	1		2	1		1
R3196MC06	multicorer	ja	1		2	1		1
R3200MC07	multicorer	ја	47	48	26	7	48	9
R3224MC08	multicorer	ja	1		2	1		1
R3190MC09	multicorer	ja	1		2	1		1
R3303MC10	multicorer	ja	1		2	1		1
R3310MC11	multicorer	ја	47	47	26	7	47	9
R3328MC12	multicorer	ја	47	49	26	7	49	1
R3333MC13	multicorer	ja	1		2	1		1
R3345MC14	multicorer	ja	43		2	7		1
R3365MC15	multicorer	ja	47	51	36	7	51	13

Tabell 3. Oversikt over analyserte parametere på overflateprøver og sedimentkjerner. For detaljert beskrivelse av analysemetoder henvises det til kap. 3.

Analyserte/målte	Overfl	ateprøver	S	edimentkje	erner	Analy	selaboratorie	
parametre	Кар.	Antall	Кар.	Antall kjerner	Antall uttak	Institutt	Referanse rapport lab	
XRI	N/A	N/A	4.3.1	11	11	NGU	2023.0164	
Vekttap v/frysetørking	N/A	11	N/A	11	512	NGU	2023.0075 2023.0136	
Kornfordeling	4.2.1	11	4.3.2	4	41	UIT & NGU	2024.0024 report core R3200MC07A report core R3310MC11A report core R3328MC12A report core R3365MC15A	
TC, TS, TOC	4.2.1	11	4.3.3	4	41			
Tungmetaller og As	4.2.2	11	4.3.5	4	41	NGU		
Ва	4.2.2	11	4.3.5	4	41			
Radioaktiv cesium ¹³⁷ Cs	4.2.2	195	4.3.4	4	195	Gamma Dating Center, Københavns		
Blyisotop ²¹⁰ Pb	N/A	N/A	4.3.4	4	195	Universitet, Danmark		

Figur 1. Kart over alle prøvetakingsstasjoner i Mareano-programmet i perioden 2006–2023, inkludert stasjoner fra 2003 og 2004 (HI-tokt). Områdene hvor de 11 stasjonene er tatt på toktene 2023001005 og 2023001009 i 2023 vises innenfor den røde firkanten i Nordsjøen. Det er brukt ulike symboler for å skille mellom stasjoner fra 2023 og tidligere stasjoner. Stasjonsnumrene fra 2023-toktene vises i Figur 2.

Figur 2. Stasjonsnumrene fra 2023-toktene, områdene Kystbeltet (KB) øst for Utsira Nord, Skagerrak og NSJ-1.

Figur 3. Multicorer med seks rør, hvorav to sedimentkjerner i gjennomsiktige PVC-rør går til kjemiske analyser og to sedimentkjerner i stålrør i midten går til mikroplastanalyse. Prøvetakingen på bildet er fra stasjon R3188, KB øst for Utsira Nord, tokt 2023001005.

Figur 4. Sedimentkjerne «A» stående i MC-prøvetakeren tatt i PVC-rør på stasjon R3200 i Kystbeltet øst for Utsira Nord, tokt 2023001005. Røret er 60 cm langt og sedimentkjernen med uforstyrret overflate har en klar vannsøyle over sedimentene. Dermed er kjernen godkjent for bruk til uorganiske kjemiske analyser. For bilde av multicorer se Figur 3.

Figur 5. Sedimentkjerne «F» stående i MC-prøvetakeren tatt i stålrør på stasjon R3196 i KB øst for Utsira Nord på tokt 2023001005. For bilde av multicorer se Figur 3. Gul-lappen er 7,5x12,5 cm.

3 METODER FOR TESTING OG ANALYSE

Med utgangspunkt i Tabell 2, som gir en oversikt over prøver til ulike undersøkelser, vises i Tabell 4 oversikt over analysemetoder, analytiske egenskaper samt type instrument.

I 2023 har det oppstått behov for å utføre en del av kornfordelingsanalysene med laser ved eksternt laboratorium (Universitetet i Tromsø, UiT). Beskrivelse av metodene for kornfordelingsanalyse tas derfor i separat Tabell 5, med utfyllende informasjon om analytiske egenskapene i kap. 3.3.1 og 3.4.

Parameter	Forbehandling	Utstyr Ref. analyse-		Utstyr	Analyseusikkerhet ¹⁾	LLQ	
	· · · · · · · · · · · · · · · · · · ·	forbehandling	metode	analyser			
Bestemmelse av vekttap originalt materiale til analyser	Frysetørking	Frysetørker Labconco FreeZone 6L med FreeZone Bulk Tray Dryer (-55°C)	Gravimetrisk	Akkreditert vekt	15 % rel. (0,01 – 100 vekt%)	+/-0,01 g	
Totalt karbon (TC)	Ikke relevant		LABdok_G03 ²⁾ (Vedlegg 1)	LECO SC-632	0,06 vekt% (0,06-0,4 vekt%) ±15% rel. (0,4-60 vekt%)	0,06 vekt%	
Totalt organisk karbon (TOC)	Syrebehandling	Varmeplate og varmeovn, med akkreditert metode for kontroll av temperatur	LABdok_G04 ²⁾ (Vedlegg 1)	LECO SC-632	±25% rel. (0,1-3 vekt%) ±20% rel. (3-60 vekt%)	0,1 vekt%	
Total svovel (TS)	lkke relevant		LABdok_G05 ²⁾ (Vedlegg 1)	LECO SC-632	±30% rel. (0,02-2 vekt%) ±20% rel. (2-52 vekt%)	0,02 vekt%	
Kornstørrelses- analyse	Se Tabell 5	·					
As					50% rel. (2-10 mg/kg) 20% rel. (10-1000 mg/kg)	2 mg/kg	
Ва					25% rel. (1-5 mg/kg) 10% rel. (5-2000 mg/kg)	1 mg/kg	
Cd	Oppslutning i 7 M HNO ₃ i autoklav iht. NS-4770 (ref. Certoclave intern metode LABdok_P03)	Oppelutning i 7 M			25% rel. (0,1-1 mg/kg) 10% rel. (1-200 mg/kg)	0,1 mg/kg	
Cr		Certoclave	LABdok_G09 ²⁾ (Vedlegg 1)	Agilent 5110 VDV	25% rel. (1-5 mg/kg) 10% rel. (5-1000 mg/kg)	1 mg/kg	
Cu				25% rel. (1-5 mg/kg) 10% rel. (5-1000 mg/kg)	1 mg/kg		
Li					25% rel. (0,5-2,5 mg/kg) 10% rel. (2,5-1000 mg/kg)	0,5 mg/kg	
Ni					25% rel. (1-5 mg/kg) 10% rel. (5-1000 mg/kg)	1 mg/kg	

Tabell 4. Beskrivelse av a	nalvsemetoder. uts	tvr og instrumenter.	LLQ: nedre kvantifise	rinasarense

Parameter	Forbehandling	Utstyr forbehandling	Ref. analyse- metode	Utstyr analyser	Analyseusikkerhet ¹⁾	LLQ
Pb					25% rel. (2-10 mg/kg) 10% rel. (10-1000 mg/kg)	2 mg/kg
Zn					37.5% rel. (4-20 mg/kg) 15% rel. (20-2000 mg/kg)	4 mg/kg
Hg			LABdok_G10 (Vedlegg 1)	Teledyne Leeman Labs QuickTrace® M-7600	40% rel. (0,005-0,025 mg/kg) 20% rel. (0,025-2,00)	0,005 mg/kg
²¹⁰ Pb	Ikke relevant		Vedlegg 2	Canberra ultralow-	Ikke relevant	Ikke relevant
¹³⁷ Cs	Ikke relevant		Vedlegg 2	background Ge-detector	Ikke relevant	Ikke relevant
XRI	lkke relevant		Metoden kan benyttes for helkjerner (0°- 45°-90°) og halvkjerner (0°).	Geotek X-ray core imaging system (MSCL-XCT, SN 165) med tilhørende programvare	lkke relevant	Ikke relevant

¹⁾ Analyseusikkerhet spesifiseres etter måleområdet. Med mindre annet angitt benyttes konfidensintervallet 95%.

²⁾ Akkreditert ved Norsk akkreditering TEST020.

Tabell 5. Beskrivelse av metoder for kornfordelingsanalyse.

Parameter	Forbehandling	Utstyr	Ref. analyse-metode	Utstyr	Analyse- usikkerhet ¹⁾	LLQ
		Soniprep 150 Plus	LABdok_K01 ²⁾	Beckman	±10 %	0,4 µm
		Digital Disintegrator	(Vedlegg 1)	Coulter LS		
Kornfordelings-				13320 v/NGU		
analyse basert	Desintegrering	Ultralydbad VWR	Tilpasset LABdok_K01	Beckman	±10 %	0,4 µm
på LPS		USCt-300	(Vedlegg 1) iht. intern	Coulter LS		
			rapport fra verifiserings-	13320 v/UiT		
			arbeid, avvik 1198			

¹) Analyseusikkerheten spesifiseres etter måleområdet. Med mindre annet angitt benyttes konfidensintervallet 95%. ²⁾ Akkreditert ved Norsk akkreditering TEST020.

3.1 Uttak av prøver til analyser

Prøvemateriale fra samme sedimentkjerne brukes til sedimentkarakterisering, analyse av uorganiske stoffer og ²¹⁰Pb-datering. Prøvene tas ombord ved "skiving" (skjæring) av sedimentkjerner i lag på én centimeter tykkelse. Sedimentkjernen presses ut av røret ved hjelp av et stempel. Figur 6 viser toppen av en sedimentkjerne som presses ut og klargjøres for skjæring ved 0-1 cm.

Prøvetakingsrørene har en indre diameter på 106 mm, noe som gir et prøvevolum på omtrent 88 cm³ (fuktig materiale) per centimeter. Prøvene pakkes i lynlås-polyetylenposer og fryses ned til -18° C ombord. Prøvematerialet sendes deretter til NGUs laboratorium for gravimetrisk bestemmelse av vekttap ved frysetørking.

Til kjemiske analyser og kornfordelingsanalyse velges prøver fra ulike dyp i sedimentkjernen. For å sikre best mulig datering sendes samtlige prøver fra utvalgte sedimentkjerner til analyse for ²¹⁰Pb og ¹³⁷Cs.

Figur 6. Toppen av sedimentkjerne «A» med vannmettet overflate før sedimentkjernen deles opp i 1-cmtykke skiver til uorganisk kjemisk analyse. De øverste centimeterne i sedimentkjernen har høyt vanninnhold, derfor flyter noe av prøven utover kanten på røret. Prøven er fra stasjon R3365 fra Skagerrak, tokt 2023001009.

3.2 Analyser ved NGUs laboratorium

3.2.1 Kjemiske analyser

Totalt organisk karbon (inkl. grafitt, TOC), total svovel (TS), og totalt karbon (TC) bestemmes ved hjelp av metode basert på forbrenning i Leco-instrument. Resultatene rapporteres som vekt% tørrvekt sediment. For detaljert rapport henvises til Vedlegg 1.

Innhold av kationer, inkl. kvikksølv bestemmes i analyseløsninger etter oppslutning i 7 M HNO₃ iht. NS-4770. Til analyse av Hg benyttes metode basert på kalddamp (CV-AAS) mens for øvrige kationer benyttes ICP-OES. Elementer som analyseres ved ICP-OES er Al, **As**, B, **Ba**, Be, Ca, **Cd**, Ce, Co, **Cr**, **Cu**, Fe, K, La, Li, Mg, Mn, Mo, Na, **Ni**, P, **Pb**, S, Sc, Si, Sn, Sr, Ti, V, Y, **Zn** og Zr, hvor elementer som følger med i denne rapporten er uthevet. Resultatene rapporteres som mg/kg tørrvekt sediment. For detaljerte rapporter henvises til Vedlegg 1.

3.2.2 XRI røntgeninspeksjon

Dette er en ikke-destruktiv røntgenmetode som benyttes på helkjerner for å studere og analysere strukturer og partikler i centimeter-størrelse i sedimentene, typisk sedimentær lagdeling, skjell og gruspartikler. Metoden er testet for bruk med både plast- og stålrør. Her er det sedimentkjerner i plastrør som undersøkt med XRI.

3.3 Analyser ved eksterne laboratorier

3.3.1 Kornfordelingsanalyser

For prøvene fra 2023-toktene var det benyttet metode basert på laserpartikkelteller (Coulter laserdiffraksjon, LPS) ved eksternt laboratorium (UiT). For detaljert rapport henvises det til Vedlegg 1.

3.3.2 Analyse av radioaktive isotoper ²¹⁰Pb og ¹³⁷Cs

Analysene er utført ved Gamma Dating Centre (GDC), København Universitet, Danmark. Metoden er basert på γ-Ray Spectrometry og det benyttes 3 Canberra Ge-detektorer. For detaljert rapport henvises det til Vedlegg 2.

3.4 Rutiner for kvalitetskontroll

NGUs laboratorier følger kvalitetskravene i ISO/IEC 17025:2017 og flere av metodene benyttet i denne rapporten er akkreditert (akkrediteringsnummer TEST020, se også Tabell 3 og Tabell 5). For kvalitetskontroll av de uorganiske kjemiske analysene er det satt inn 4 paralleller av følgende husstandarder:

- Hynne og Hynne-2023 (sediment fra Trondheimsfjorden)
- Tana (rød tanaskifer fra Tana, Finmark)
- Minn (jord fra Nordkyn, Finnmark)
- N-std (sediment fra Barentshavet)

Analyseresultatene for disse følger med i rapportene i Vedlegg 1.

Kornfordelingsanalyse ble utført ved UiT. Analysekvalitet ved ekstern lab (UiT) er dokumentert i avvik 1198 ved NGU. Kvalitetskravene ved NGUs metode i LABdok_K01 benyttes også ved validering der ekstern lab benyttes.

Dateringsanalysene (²¹⁰Pb og ¹³⁷Cs) er ikke akkrediterte. Metodene etablert ved Gamma Dating Center er presentert i vitenskapelige artikler (Andersen, 2017).

3.5 Kvantifiseringsgrenser

I de fleste sammenhenger benyttes konsentrasjonsenheten mg/kg bortsett fra TOC, TC og TS, der vektprosent benyttes. For å kunne operere med statistikk og kart for alle observasjoner er alle analyseresultater rapportert som «nedre kvantifiseringsgrense» (LLQ) satt til verdien 0,5 x LLQ for det gjeldende stoff. For eksempel nedre kvantifiseringsgrense for kadmium er 0,1 mg/kg sediment tørrvekt, og den halve kvantifiseringsgrensen er 0,05 mg/kg sediment, som da vil være den verdien en prøve under LLQ vil bli presentert med i et kart.

4 **RESULTATER**

4.1 Bakgrunnsinformasjon

4.1.1 Sedimentklassifikasjon etter kornstørrelse

NGU har etablert en sedimentklassifikasjon (Bøe m. fl., 2010), som revideres ved behov (<u>https://www.ngu.no/Mareano/Kornstorrelse.html</u>). Deler av sedimentklassifikasjonen relevant for denne rapporten er presentert i Tabell 6.

Tabell 6. Sedimentklassifikasjon etter kornstørrelser for sedimenter,	som anvendes for kjemiske analyser.
Klassifikasjonen er i henhold til NGUs sedimentklassifikasjon.	

Kornstørrelse	Definisjon/beskrivelse
Leir	Leir:silt > 2:1 og leir+silt > 90 %, sand < 10 %, grus < 2 %
Organisk slam	Leir:silt fra 1:2 til 2:1 og leir + silt > 90 %, sand < 10 %, grus < 2 %. Høyt
Organisk slam	innhold av organisk material.
Slam	Leir:silt fra 1:2 til 2:1 og leir + silt > 90 %, sand < 10 %, grus < 2 %
Sandholdig leir	Leir:silt > 2:1 og leir+silt > 50 %, sand < 50 %, grus < 2 %
Sandholdig slam	Leir:silt = fra 1:2 til 2:1 og leir+silt > 50 %, sand < 50 %, grus < 2 %
Silt	Leir:silt < 1:2 og leir + silt > 90 %, sand < 10 %, grus < 2 %
Sandholdig silt	Silt:leir > 2:1 og leir + silt > 50 %, sand < 50 %, grus < 2 %
Leirholdig sand	Sand > 50 %, leir:silt > 2:1 og leir+silt < 50 %, grus < 2 %
Slamholdig sand	Sand > 50 %, leir:silt = fra 1:2 til 2:1 og leir+silt < 50 %, grus < 2 %
Siltholdig sand	Sand > 50 %, silt:leir > 2:1 og leir+silt < 50 %, grus < 2 %
Fin sand	Sand > 90 %, inkluderer fin og veldig fin sand (Wentworth, 1922)
Sand	Sand > 90 %, leir+silt < 10 %, grus < 2 %

4.1.2 Beregning av vektprosent karbonat

Innholdet av karbonat i sedimentene beregnes fra analyser med Leco, og gjøres ut fra antakelsen om at karbon (C) som ikke er av organisk opprinnelse er bundet i kalsiumkarbonat (CaCO₃). Karbonat-bundet karbon fjernes ved å syrebehandle prøven på varmebad. Karbonatverdiene i vektprosent beregnes fra følgende formel:

 $(TC - TOC) \times (CaCO_3/C) = (TC - TOC) \times 8,33$

TC er innholdet av totalt karbon, mens TOC er innhold av total organisk karbon.

Karbonat i sedimentene antas å ha opprinnelse i biologisk materiale, i hovedsak skjell fra mikroorganismer og større bunnlevende dyr, for eksempel foraminiferer, kråkeboller, brachiopoder og koraller. Alternativt kan karbonat ha opprinnelse i eroderte bergarter/mineraler med innhold av karbonat.

4.2 Overflateprøver

De geokjemiske resultatene for overflateprøvene rapporteres for å gi oversikt over dagens miljøtilstand. Det er til sammen analysert 11 overflateprøver (Tabell 2).

Parameterne som presenteres her er sedimentenes finstoffandel, innhold av TOC, innhold av karbonat og innholdet av tungmetallene kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni), bly (Pb) og sink (Zn), samt elementene arsen (As) og barium (Ba). Videre rapporteres radioaktivt ¹³⁷Cs, som er analysert i forbindelse med dateringsanalysene utført på sedimentkjerner fra 4 utvalgte stasjoner.

4.2.1 Kornstørrelsesfordeling, organisk karbon, karbonat og svovel

Prøvetakingen for miljøanalyser gjennomføres fortrinnsvis i avsetningsområder med finkornete sedimenter. De fleste prøvetakingsstasjoner er valgt ut før tokt på bakgrunn av blant annet multistråledata (dybde og bunnreflektivitet). Metodikken for geologisk havbunnskartlegging er gitt i Bøe m. fl. (2010) og Bellec m. fl. (2017). Prøvetaking planlegges der en forventer at det avsettes slamholdige sedimenter, typisk i dype områder eller områder med svake havstrømmer. Andel finstoff (< 63 µm = slam = leir+silt) i overflateprøvene er vist i Figur 7, mens Figur 8 er et kartutsnitt med stasjonene fra toktene i 2023.

Tabell 7 viser kornstørrelsesfordelingen i leir-, silt-, finstoff-, sand- og grusfraksjoner for overflateprøvene fra de 11 stasjonene.

TOC i overflateprøvene er presentert i Figur 9 og Figur 10, hvor Figur 10 viser mer detaljerte kart av de kartlagte områdene i 2023. Prøvene fra stasjonene i KB øst for Utsira Nord viser at TOC-innholdet varierer fra 1,04 vekt% i R3196, til 1,50 vekt% TOC i R3200. Prøvene fra stasjonene i Skagerrak har TOC-verdier varierende fra laveste 2,0 vekt% i R3365 (NS-SK-Nord_IT-1) til høyeste TOC- verdi på 2,4 vekt% i R3328 (NS-SK-UT_Sør-1). Overflateprøven fra R3224, (NSJ 1) har 0,5 vekt% TOC. Denne stasjonen har også de mest grovkornede sedimentene av de 11 analyserte prøvene (Tabell 7).

Karbonat i overflatesedimentene er vist i Figur 11, med et detaljert kartutsnitt for prøvene fra 2023-toktene i Figur 12. Karbonat utgjør fra 11 vekt% til 15,8 vekt% i KB øst for Utsira Nord. Overflateprøvene fra Skagerrak varierer fra 10,6 vekt% til 13,5 vekt%, slik at dette området har stabil andel karbonat i overflatesedimentene. R3224 fra NSJ-1 har 5,87 vekt% og er dermed noe lavere enn de andre stasjonene.

Figur 7. Andel finstoff (partikler med kornstørrelse < 63 µm) i overflateprøvene fra 2023-toktene. Prøvene fra 2023-stasjonene er markert med rød ring innenfor den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 8.

Figur 8. Andel finstoff (partikler med kornstørrelse < 63 µm) i overflateprøver i havområdet vist som kartutsnitt i Figur 7. Prøvene fra 2023-toktene (områdene Kystbeltet (KB) øst for Utsira Nord, Skagerrak og NSJ-1 er markert med rød ring.

Kornstørrelse	μm	< 2µm	2 – 63µm	< 63µm	63 – 2000µm	>2000µm	NGU sediment	
Stasjon	Område	% leire	% silt	% leire + silt	% sand	% grus	klassifikasjon	
R3188MC05	KB øst for Utsira Nord	9,6	75,0	84,6	15,4	0,0	sandholdig silt	
R3190MC09	KB øst for Utsira Nord	8,3	55,7	64,0	36,0	0,0	sandholdig silt	
R3196MC06	KB øst for Utsira Nord	9,1	61,2	70,3	29,7	0,0	sandholdig silt	
R3200MC07	KB øst for Utsira Nord	8,2	69,6	77,8	22,2	0,0	sandholdig silt	
R3224MC08	NSJ-1	2,1	41,2	43,3	56,7	0,0	siltholdig sand	
R3303MC10	NS-SK-Sør_UT-1	5,5	90,6	96,1	3,9	0,0	silt	
R3310MC11	NS-SK-Sør_UT-1	11,4	88,2	99,6	0,4	0,0	silt	
R3328MC12	NS-SK-Sør_UT-1	6,8	87,2	94,0	6,0	0,0	silt	
R3333MC13	NS-SK-Sør_UT-1	9,1	90,3	99,4	0,6	0,0	silt	
R3345MC14	NS-SK-Sør_UT-1	8,4	91,6	100,0	0,0	0,0	silt	
R3365MC15	NS-SK_Nord_IT-1	9,5	88,5	98,0	2,0	0,0	silt	

Tabell 7. Kornstørrelsesfordeline	ı oq sedimentklassifikasjon for overflateprø	vene (0-1 cm dybde).
	, - 5	

Figur 9. TOC-konsentrasjon (vekt% TOC) i overflateprøver. Prøvene fra 2023-toktene er markert med rød ring innenfor den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 10.

Figur 10. TOC-konsentrasjon (vekt% TOC) i overflateprøver i havområdet vist som kartutsnitt i Figur 9. Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 11. Karbonat-konsentrasjon (vekt% karbonat) i overflateprøver. Prøvene fra 2023-toktene i Nordsjøen er vist med rød ring i den røde firkanten. Detaljert kart vises i Figur 12.

Figur 12. Karbonat-konsentrasjon (vekt% karbonat) i overflateprøver i havområdene vist som kartutsnitt i Figur 11. Prøvene fra 2023-toktene i områdene KB øst for Utsira Nord, Skagerrak og NSJ-1 er markert med rød ring.

4.2.2 Tungmetaller, barium og cesium-137 (¹³⁷Cs)

Miljøgiftene bly (Pb), kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni), sink (Zn) samt arsen (As) er analysert i overflateprøvene fra de 11 prøvetakingsstasjonene. Disse elementene er forurensende og kan utgjøre en risiko for menneskers helse (Braastad, 2000). Konsentrasjonene er sammenliknet med Miljødirektoratets klassifikasjonssystem for forurensingsnivåer i sedimenter i kyst- og fjordområder (Molvær m. fl., 1997; SFT, 2007) sist revidert 30.10.2020 (Miljødirektoratet Veileder M-608).

Det er over tid skjedd noen justeringer for inndeling i tilstandsklasser for en rekke uorganiske miljøgifter i sedimenter. Justeringene i grenseverdiene medfører også at metallkonsentrasjonskartene blir justert i forhold til endrede grenseverdier:

- tilstandsklasse I: bakgrunn
- tilstandsklasse II: god
- tilstandsklasse III: moderat
- tilstandsklasse IV: dårlig
- tilstandsklasse V: svært dårlig

Klassifiseringssystemet for sedimenter er ment til bruk for finkornet sediment, bestående av leir og/eller silt og anvendes ikke for sedimenter med innslag av grus eller sand.

Resultatene fra analyse av miljøgifter i overflatesedimentene er oppsummert i Tabell 8, hvor det vises antall prøver innenfor hver av tilstandsklassene i henhold til Miljødirektoratets klassifikasjonssystem for sedimenter (<u>Miljødirektoratet Veileder M-608</u>).

I denne vurderingen er det også inkludert barium (Ba) selv om dette ikke er klassifisert som et toksisk element. Olsgård og Gray (1995) og Rye (1996) har rapportert om utslipp av barytt fra norsk offshorevirksomhet i Nordsjøen. Haanes m. fl. (2023) bruker Mareanos kjemidata til og med 2019 (<u>https://mareano.no/kart-og-data/kjemidata</u>) for å gi en statistisk basert oversikt over hvor det finnes anrikning av Ba i de øverste lagene i sedimentkjerner. Ba i sedimenter i Skagerrak er rapportert, og de forhøyede verdiene øverst i havbunnen er tolket som tilførsel av barium fra boreslamutslipp fra boringer i Nordsjøen og transportert med havstrømmer til Skagerrak (Sæther m. fl., 1996; Thorsnes og Klungsøyr, 1997; Lepland m. fl., 2000). Dehairs m. fl. (1980) og Nuernberg m. fl. (1997) beskriver prosesser og forekomst av Ba i sedimenter: det dannes små baryttkrystaller i mikronisjer i organisk materiale som brytes ned spesielt i områder med høy biologisk produktivitet.

Parametere		Forurensningsnivåer					
		I	11 11		IV	V	
		Bakgrunn	God	Moderat	Dårlig	Svært dårlig	
Aroon Ao	mg/kg	<15	15-18	18-71	71 – 580	>580	
Arsen, As	antall	5	1	5	0	0	
	mg/kg	<25	25 -150	150-1480	1480-2000	>2000	
ыу, Ро	antall	1	10	0	0	0	
Kadmium Cd	mg/kg	<0,20	0,20 – 2,5	2,5 –16	16 – 157	>157	
Kaumum, Cu	antall	11	0	0	0	0	
Kabbar Cu	mg/kg	<20	20 - 84		84-114	>114	
Kobber, Cu	antall	11	0		0	0	
Krom, Cr	mg/kg	<60	60 – 620	620 – 6000	6000 – 15500	>15500	
	antall	11	0	0	0	0	
	mg/kg	<0,050	0,05 - 0,52	0,52 – 0,75	0,75 – 1,45	>1,45	
rvikksølv, ng	antall	5	6	0	0	0	
Nikkol Ni	mg/kg	<30	30 – 42	42 – 271	271 – 533	>533	
INIKKEI, INI	antall	4	7	0	0	0	
Sink Zn	mg/kg	<90	90 – 139	139 – 750	750 – 6690	>6690	
SIIIK, ZII	antall	5	6	0	0	0	

Tabell 8. Vurdering av overflateprøver fra 2023-toktene (11 stasjoner) i henhold til Miljødirektoratets tilstandsklasser for marine sedimenter. Uthevet skrift viser antall overflateprøver i hver av klassene I-V.

De laveste verdiene for miljøgifter måles ved stasjonen R3224 i området NSJ-1. Lav akkumulasjon av uorganiske miljøgifter ved denne stasjonen kan forklares ved at sedimentet er grovkornet: innholdet av finstoff (< 63 µm) er 43,3% (Tabell 6) og prøven klassifiseres dermed som siltholdig sand.

Generelt er konsentrasjonen av tungmetaller inkl. arsen lavere i området KB øst for Utsira Nord enn i Skagerrak. En nærmere vurdering av data presenteres nedenfor. Kart for de analyserte kjemiske elementene blir presentert i teksten. Radioaktivt ¹³⁷Cs blir rapportert for overflatesedimentene. ¹³⁷Cs er analysert sammen med den radioaktive ²¹⁰Pb-isotopen, som brukes for datering av sedimentkjerner, presentert i kap. 4.3.4.

Arsen (As)

As-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet vises i Figur 13. I det detaljerte kartet for prøvene fra 2023-toktene (Figur 14) fremgår det at den laveste As-konsentrasjon (3,1 mg/kg) ble målt ved stasjonen R3224 i området NSJ-1.

Generelt viser prøvene fra KB øst for Utsira Nord lave konsentrasjoner av As, mellom 9,9 og 13,4 mg/kg, som tilsvarer tilstandsklasse I (bakgrunnsnivå). Derimot er As-konsentrasjonen høyere i prøvene fra

Skagerrak, særlig i området NS-SK-Sør_UT-1. Samtlige prøver fra dette området klassifiseres til tilstandsklasse III, med As-konsentrasjoner mellom 30,1 og 51,7 mg/kg (tørrvekt sediment).

Prøven fra stasjon R3365 i Skagerrak i området NS-SK-Nord_IT-1 skiller seg ut og klassifiseres til tilstandsklasse II med en As-konsentrasjon på 15,7 mg/kg.

Bly (Pb)

Pb-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 15. I det detaljerte kartet for prøvene fra 2023-toktene (Figur 16) vises at den laveste Pb-konsentrasjonen (7,8 mg/kg) ble målt ved stasjonen R3224 i området NSJ-1.

Prøvene fra de øvrige stasjonene tilhører tilstandsklasse II (<150 mg/kg Pb), og har et Pb-innhold i den nedre delen av konsentrasjonsområdet for denne tilstandsklasse, med konsentrasjon mellom 31,0 og 56,6 mg/kg.

Kadmium (Cd)

Kadmium-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist Figur 17. Kadmium i prøvene fra 2023-toktene (Figur 18), med unntak av prøven fra stasjon R3333 i Skagerrakområdet NS-SK-Sør_UT-1 er under kvantifiseringsgrensa på 0,1 mg/kg sediment tørrvekt. Cd-innhold i prøven fra stasjon R3333 er 0,14 mg/kg sediment, tilsvarende tilstandsklasse I (0-0,20 mg/kg).

Kobber (Cu)

Kobberkonsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 19. Kobberkonsentrasjonene i alle de analyserte prøvene fra 2023-toktene (Figur 20) er lave og ligger under 20 mg/kg, noe som klassifiserer dem som bakgrunnsnivå (tilstandsklasse I). Kobber-konsentrasjon er noe høyere i Skagerrak enn i området KB øst for Utsira Nord, mens den laveste Cu-konsentrasjon (2,8 mg/kg) er målt ved stasjon R3224 i NSJ-1.

Krom (Cr)

Kromkonsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 21. Kromkonsentrasjon i prøvene fra 2023-tokten (Figur 22) følger samme trend som kobber. Samtlige prøver klassifiseres til tilstandsklassen I (bakgrunnsnivå). Krom-konsentrasjon i Skagerrak-området ligger mellom 49,1 og 53,7 mg/kg, mens i området KB øst for Utsira Nord er krom-innholdet noe lavere og ligger i området 33,2 – 46,2 mg/kg. Ved stasjonen R3224 i NSJ-1, måles lavest Cr-verdi (12,3 mg/kg).

Kvikksølv (Hg)

Hg-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 23. I det detaljerte kartet for prøvene fra 2023-toktene (Figur 24) vises at den laveste Hg-konsentrasjon (0,0105 mg/kg) ble målt ved stasjonen R3224 i området NSJ-1 i tilstandsklasse I.

Hg-konsentrasjon i prøvene fra KB øst for Utsira-området er under 0,035 mg/kg, som tilsvarer tilstandsklassen I (bakgrunn). Prøvene fra stasjonene innerst i Skagerrak har betydelig høyere kvikksølvinnhold på 0,053-0,097 mg/kg sediment tørrvekt, som tilsvarer tilstandsklasse II.

<u>Nikkel (Ni)</u>

Ni-konsentrasjonen i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 25. I det detaljerte kartet for prøvene fra 2023-toktene (Figur 26) fremgår det at den laveste Ni-konsentrasjonen (6,7 mg/kg) ble målt ved stasjonen R3224 i området NSJ-1 som tilsvarer tilstandsklasse I.

Nikkelkonsentrasjonen følger samme trend som krom. For prøvene fra områdene NSJ-1 og KB øst for Utsira Nord er det påvist en lineær korrelasjon mellom innholdet av nikkel og krom. Dette indikerer at nikkel og krom sannsynligvis stammer fra samme kilde og akkumuleres i finstoffet gjennom samme mekanisme. Ni-konsentrasjonen varierer i området 21,7 til 32,7 mg/kg, hvor den høyeste verdien ble målt ved stasjon R3200. Prøvene fra KB øst for Utsira Nord klassifiseres i tilstandsklasse I (bakgrunnsnivå), med unntak av prøven fra stasjon R3200, som klassifiseres i tilstandsklasse II.

Stasjonene i Skagerrak viser lite variasjon i Ni-konsentrasjon med verdier på 36,1 til 39,2 mg/kg sediment i NS-SK-Sør_UT-1. I NS-SK-Nord_IT-1 måles noe lavere Ni-konsentrasjon (31,5 mg/kg). Samtlige prøver i Skagerrak klassifiseres i tilstandsklasse II (god).

Sink (Zn)

Zink-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 27.

Zn-konsentrasjon i prøvene fra 2023-tokten (Figur 28) følger samme trend som nikkel. Den laveste Znkonsentrasjonen (16,7 mg/kg) ble målt ved stasjon R3224 i området NSJ-1 og klassifiseres i tilstandsklassen I (bakgrunn). Zn-konsentrasjon i prøvene fra KB øst for Utsira Nord er under 90 mg/kg og klassifiseres dermed i tilstandsklassen I. Samtlige prøver fra Skagerrak har derimot høyere sinkkonsentrasjon, på 105 -110 mg/kg. Dette tilsvarer tilstandsklassen II (god).

Barium (Ba)

Barium analyseres for å vurdere om utslipp fra petroleumsindustrien kan spores i sedimentene, men det er viktig å presisere at også naturlige kilder kan gi forhøyde verdier. Ba-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er vist i Figur 29. Det detaljerte kartet for prøvene fra 2023-toktene (Figur 30) viser at den laveste Ba-konsentrasjon er målt ved stasjon R3224 i NSJ-1. I området KB øst for Utsira Nord er Ba-konsentrasjonen 64,1 – 75,4 mg/kg. I området NS-SK-Sør_UT-1 er Ba-konsentrasjonen mye høyere, mellom 153 og 219 mg/kg. Ved stasjon R3365 i området NS-SK-Nord_IT-1 måles noe lavere konsentrasjon enn ved stasjonene i NS-SK-Sør_UT-1 (109 mg/kg).

Cesium-137 (137Cs)

¹³⁷Cs er et menneskeskapt radioaktivt element. De viktigste kildene er utslippet fra Tsjernobyl i 1986 og de atmosfæriske atomprøvesprengningene på Novaja Semlja på 1950- og 1960-tallet. Det siste større utslippet av ¹³⁷Cs skjedde fra Fukushima atomanlegget i Japan i 2011.

Det er analysert for ¹³⁷Cs på i alt 4 stasjoner, med 1 stasjon fra KB øst for Utsira Nord, 2 stasjoner fra NS-SK-Sør_UT-1 og 1 stasjon fra NS-SK-Nord_IT-1.

¹³⁷Cs-konsentrasjon i overflateprøvene fra alle prøvestasjoner i Mareano-programmet er presentert i Figur 31. Det detaljerte kartet for prøvene fra 2023-toktene i Figur 32 viser at de to overflateprøvene fra NS-SK-Sør_UT-1 har 0 Bq/kg. Ved stasjonen R3200 fra KB øst for Utsira Nord har ¹³⁷Cs 7 Bq/ kg sediment tørrvekt, mens overflateprøven fra stasjonen R3365 fra NS-SK-Nord_IT-1 har 9 Bq/kg. Dateringsanalysene gås gjennom i kap. 4.3.4. Høyere ¹³⁷Cs i kystnære R3365 sammenlignet med R3310 og R3328 fra NS-SK-Sør_UT-1 tyder på avrenning av ¹³⁷Cs fra land som en vesentlig faktor for tilførsel kystnært.

Figur 13. Arsen-konsentrasjon (mg/kg As) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<15 mg/kg As). Grønne punkt angir tilstandsklasse II (15-18 mg/kg As). Gule punkt angir tilstandsklasse III (18-71 mg/kg As). Oransje punkt angir tilstandsklasse IV (71-580 mg/kg As). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 14.

Figur 14. Arsen-konsentrasjon (mg/kg As) i overflateprøver i kartutsnittet i Figur 13. Blå prøvepunkter angir tilstandsklasse I (<15 mg/kg As). Grønne punkt angir tilstandsklasse II (15-18 mg/kg As). Gule punkt angir tilstandsklasse II (18-71 mg/kg As). Oransje punkt angir tilstandsklasse IV (71-580 mg/kg As). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 15. Bly-konsentrasjon (mg/kg Pb) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<25 mg/kg Pb). Grønne punkt angir tilstandsklasse II (25-150 mg/kg Pb). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 16.

Figur 16. Bly-konsentrasjon (mg/kg Pb) i overflateprøver i kartutsnittet i Figur 15. Blå prøvepunkter angir tilstandsklasse I (<25 mg/kg Pb). Grønne punkt angir tilstandsklasse II (25-150 mg/kg Pb). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 17. Kadmium-konsentrasjon (mg/kg Cd) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<0,2 mg/kg Cd). Grønne punkt angir tilstandsklasse II (0.2-2,5 mg/kg Cd). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 18.

Figur 18. Kadmium-konsentrasjon (mg/kg Cd) i overflateprøver i kartutsnittet i Figur 17. Blå prøvepunkter angir tilstandsklasse I (<0,2 mg/kg Cd). Grønne punkt angir tilstandsklasse II (0.2-2,5 mg/kg Cd). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 19. Kopper-konsentrasjon (mg/kg Cu) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<20 mg/kg Cu). Grønne punkt angir tilstandsklasse II (20-84 mg/kg Cu). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 20.

Figur 20. Kopper-konsentrasjon (mg/kg Cu) i overflateprøver i kartutsnittet i Figur 19. Blå prøvepunkter angir tilstandsklasse I (<20 mg/kg Cu). Grønne punkt angir tilstandsklasse II (20-84 mg/kg Cu). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 21. Krom-konsentrasjon (mg/kg Cr) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<60 mg/kg Cr). Grønne punkt angir tilstandsklasse II (60-620 mg/kg Cr). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 22.

Figur 22. Krom-konsentrasjon (mg/kg Cr) i overflateprøver i kartutsnittet i Figur 21. Blå prøvepunkter angir tilstandsklasse I (<60 mg/kg Cr). Grønne punkt angir tilstandsklasse II (60-620 mg/kg Cr). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 23. Kvikksølv-konsentrasjon (mg/kg Hg) i overflateprøvene. Blå punkt angir tilstandsklasse I (<0,05 mg/kg Hg). Grønne punkt angir tilstandsklasse II (0,05 – 0,52 mg/kg Hg). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 24.

Figur 24. Kvikksølv-konsentrasjon (mg/kg Hg) i overflatesedimenter i kartutsnittet i Figur 23. Blå punkt angir tilstandsklasse I (<0,05 mg/kg Hg). Grønne punkt angir tilstandsklasse II (0,05 – 0,52 mg/kg Hg). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 25. Nikkel-konsentrasjon (mg/kg Ni) i overflateprøver. Blå punkt angir tilstandsklasse I (< 30 mg/kg Ni). Grønne punkter angir tilstandsklasse II (30 – 42 mg/kg Ni). Gule punkt angir tilstandsklasse III (42 – 271 mg/kg Ni). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 26.

Figur 26. Nikkel-konsentrasjon (mg/kg Ni) i overflatesedimenter i kartutsnittet i Figur 25. Blå punkt angir tilstandsklasse I (<30 mg/kg Ni). Grønne punkter angir tilstandsklasse II (30-42 mg/kg Ni), og gule punkt angir tilstandsklasse III (42-271 mg/kg Ni). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 27. Zink-konsentrasjon (mg/kg Zn) i overflateprøver. Blå prøvepunkter angir tilstandsklasse I (<90 mg/kg Zn). Grønne punkt angir tilstandsklasse II (90-139 mg/kg Zn). Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 28.

Figur 28. Zink-konsentrasjon (mg/kg Zn) i overflatesedimenter i kartutsnittet i Figur 27. Blå prøvepunkter angir tilstandsklasse I (<90 mg/kg Zn). Grønne punkt angir tilstandsklasse II (90-139 mg/kg Zn). Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 29. Barium-konsentrasjon (mg/kg Ba) i overflatesedimenter. Prøvene fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 30.

Figur 30. Barium-konsentrasjon (mg/kg Ba) i overflatesedimenter fra kartutsnittet i Figur 29. Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord, Skagerrak og NSJ-1) er markert med rød ring.

Figur 31. Konsentrasjon i radioaktivt cesium (mg/kg ¹³⁷Cs) i overflatesedimenter. Prøver fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 32.

Figur 32. Konsentrasjon i radioaktivt cesium (mg/kg ¹³⁷Cs) i overflatesedimenter fra kartutsnittet i Figur 31. Prøvene fra 2023-toktene (områdene KB øst for Utsira Nord og Skagerrak) er markert med rød ring.

4.3 Sedimentkjerner

4.3.1 Visuell bedømmelse og XRI-analyser

Sedimentkjernene blir beskrevet ombord samtidig med at de blir delt opp i 1 cm tykke skiver. Det er tatt hele sedimentkjerner som tas med til laboratoriet, hvor de blir analysert med røntgen (XRI). Dette gjøres for å få en kvalitativ vurdering for valg av stasjoner for dateringsanalyse, geokjemisk analyse av hele sedimentkjerner og valg av sedimentkjerner for mikroplast-analyser.

XRI-bildene gir informasjon om blant annet lagdeling, om sedimentene er homogene, bioturbasjon og om det finnes større partikler som f.eks. gruspartikler eller skjell. Denne typen registreringer er viktige for vurdering av sedimentasjonsmiljøet.

Eksempler for de forskjellige kjernene er presentert i denne delen av rapporten, med vekt på sedimentkjerner fra stasjonene der det er gjennomført dateringsanalyser og kjemiske analyser i hele sedimentkjerner.

Oversikten i Tabell 2 viser for hvilke sedimentkjerner det er tatt XRI-bilder, som gjengis i tabellen nedenfor (Tabell 9). I alt 11 sedimentkjerner er analysert med XRI.

Tabell 9: Kjerner med XRI-bilder fra tokt i 2023, med henvisning til andre analyser utført på kjerner fra samme stasjoner.

Område	Stasjon	Ref. til XRI- bilde i rapporten	Analyse av kjerner		
			Kjemiske analyser og kornfordelings- analyser	Datering	MP- analyser
KB øst for Utsira Nord	R3188MC05	Figur 33			
KB øst for Utsira Nord	R3190MC09	Figur 34			
KB øst for Utsira Nord	R3196MC06	Figur 35			
KB øst for Utsira Nord	R3200MC07	Figur 36	х	х	х
NSJ-1	R3224MC08	Figur 37			
NS-SK-Sør_UT-1	R3303MC10	Figur 38			
NS-SK-Sør_UT-1	R3310MC11	Figur 39	х	х	х
NS-SK-Sør_UT-1	R3328MC12	Figur 40	Х	х	
NS-SK-Sør_UT-1	R3333MC13	Figur 41			
NS-SK-Sør_UT-1	R3345MC14	Figur 42	Х		
NS-SK_Nord_IT-1	R3365MC15	Figur 43	Х	х	х

Sedimentkjerner fra stasjoner i KB øst for Utsira Nord (R3188, R3190, R3196, R3200)

Det er analysert 4 sedimentkjerner fra KB øst for Utsira Nord.

R3188MC05 er 41 cm lang, med tydelige spor av bioturbasjon i hele kjernen og vannrette ganger med lysere sedimenter (Figur 33). Sedimentkjernen blir gradvis mørkere lengre ned pga. økt kompaktering. Større graveganger ses i de nederste 12 cm (44 – 56 cm på målestokken).

R3190MC09 er 41 cm lang. Det er re-sedimentasjon i de øverste 1-2 cm, vist med de laminerte sedimentene i intervallet 15 – 17 cm på skalaen til venstre for kjernen. Re-sedimentasjonen skyldes sannsynligvis at kjernen har blitt forstyrret under transport etter prøvetakingen. Sedimentene under dette laget er tydelig påvirket av bioturbasjon helt til bunnen av kjernen (Figur 34). Det er graveganger med liten bredde og korte lengder øverst, mens det i den nedre halvdelen er større graveganger.

R3196MC06 er 41 cm lang. Det er tydelige graveganger i hele kjernen. Det er graveganger med liten bredde og korte lengder øverst (Figur 35) og graveganger med større diameter dypere, noe som kan tyde på større bunnlevende dyr som kan grave dypere i sedimentene.

R3200MC07 (Figur 36) blir mørkere dypere i kjernen. Dette skyldes økt kompaktering med dypet i kjernen. Det er fremdeles mulig å se graveganger dypest i kjernen.

Sedimentkjerne fra NSJ-1 (R3224)

R3224MC08 er ca. 27 cm lang og dermed kortere enn de andre kjernene (Figur 37). Det er vannrette og få skrå graveganger øverst i sedimentkjernen. Sedimentene her består av grovere sedimenter av slamholdig sand (kap. 4.1.1). Det et helt og velbevart skjell ca. 15 cm under overflaten i sedimentkjernen.

Sedimentkjerner fra Skagerrak, NS-SK-Sør_UT-1 (R3303, R3310, R3328, R3333, R3345)

Det er analysert 5 sedimentkjerner fra NS-SK-Sør_UT-1.

R3303MC10 er en 44 cm lang sedimentkjerne (Figur 38). Gravegangene er noen millimeter i diameter og ses pga. kontrasten mellom lysere sedimenter (mindre kompaktert) i gravegangene og mørkere sedimenter rundt gravegangene. Gravegangene kommer tydeligst frem i de øverste 13 cm. Under dette intervallet er graveganger mindre tydelige pga. mindre kontrast til omkringliggende sedimenter. De fleste gravegangene er få millimeter brede og noen cm lange.

R3310MC11 er en 43 cm lang sedimentkjerne med homogen grå farge i sedimentene og tydelige spor av bioturbasjon i de øverste 24 cm (Figur 39).

R3328MC12 er 47 cm lang, med omtrent samme grå sedimenter i hele kjernen (Figur 40). Det er graveganger i hele kjernen, primært bestående av graveganger med millimeterbrede og få cm lange spor. Det kan være børstemark som har laget disse sporene (Hertweck m. fl., 2007). Det er tegn på at overflaten kan være forstyrret vist med vannrette lag av sedimenter i de øverste 2 cm.

R3333MC13 er 44 cm lang (Figur 41). Som de 3 tidligere presenterte sedimentkjernene er det homogene sedimenter. Det ses noen horisontale graveganger i de øverste 7 cm og under er det et 4 cm intervall med homogene sedimenter uten tydelige graveganger. Sedimentene i de 33 cm under dette intervallet har tydelige graveganger.

R3345MC14 er en 41 cm lang sedimentkjerne med homogene sedimenter (kornstørrelsesfordeling i avsnitt 4.3.2) og omtrent lik gråfarge i hele kjernen (Figur 42). Den har primært graveganger som er noen millimeter brede og noen få cm lange. Det er lyse sedimenter i de øverste 11 cm, med tydelige, overveiende vannrette graveganger. Utover det har sedimentkjernen varierende mørkere og lysere partier i sedimentene, som sannsynligvis skyldes forskjeller i kompaktering.

Sedimentkjerne fra Skagerrak, NS-SK-Nord_IT-1 (R3365)

R3365MC15 er ca. 42 cm lang, med sedimenter med samme grå farge i hele kjernen (Figur 43). De øverste ca. 20 cm har tydelige graveganger etterfulgt av et ca. 4 cm intervall med færre graveganger. Den nederste delen har tydelige graveganger. Denne kjernen kan være påvirket av tråling. Dette blir vurdert i avsnittene 4.3.4 og 4.3.5.

Figur 33. XRI-bilde av sedimentkjerne R3188MC05, KB øst for Utsira Nord. Målestokk i cm-skala til venstre.

Figur 34. XRI-bilde av sedimentkjerne R3190MC09, KB øst for Utsira Nord. Målestokk i cm-skala til venstre.

Figur 35. XRI-bilde av sedimentkjerne R3196MC06, KB øst for Utsira Nord. Målestokk i cm-skala til venstre.

Figur 36. XRI-bilde av sedimentkjerne R3200MC07, KB øst for Utsira Nord. Målestokk i cm-skala til venstre.

Figur 37. XRI-bilde av sedimentkjerne R3224MC08, i NSJ-1. Målestokk i cm-skala til venstre.

Figur 38. XRI-bilde av sedimentkjerne R3303MC10, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre.

Figur 39. XRI-bilde av sedimentkjerne R3310MC11, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre.

Figur 40. XRI-bilde av sedimentkjerne R3328MC12, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre.

Figur 41. XRI-bilde av sedimentkjerne R3333MC13, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm skala til venstre.

Figur 42. XRI-bilde av sedimentkjerne R3345MC14, NS-SK-Sør_UT-1, Skagerrak. Målestokk i cm-skala til venstre.

Figur 43. XRI-bilde av sedimentkjerne R3365MC15, NS-SK-Nord_IT-1, Skagerrak. Målestokk i cm-skala til venstre.

4.3.2 Kornstørrelsesfordeling

Analyse av kornfordeling er utført på fem sedimentkjerner fra følgende stasjoner: R3200 (KB øst for Utsira Nord), R3310, R3328, og R3345 (NS-SK-Sør_UT-1) og R3365 (NS-SK-Nord_IT-1). Metode for kornstørrelsesanalyse er nærmere beskrevet i kap. 3.

Ved vurdering av kornstørrelsesfordelingen benyttes følgende klassifisering (etter partikkelstørrelse): leir (<2 µm), silt (2-63 µm), sand (63-2000 µm) og grus (>2000 µm). Sistnevnte fraksjon er ikke registrert blant prøvene fra 2023-toktene og vises derfor ikke i figuren for de analyserte sedimentkjernene. For en mer detaljert klassifisering benyttes kriteriene i Tabell 6.

Kornstørrelsesfordelingen er en viktig faktor for vurdering av avsetningsmiljøet med tanke på strømforhold og avsetningsforhold. Høy andel finstoff (slam = leir pluss silt) er uttrykk for rolige avsetningsforhold for sedimenter. Mer sandholdige sedimenter er uttrykk for et høyere energinivå (sterkere strømmer), som hindrer avsetning av de mest finkornete partiklene, leir og silt.

Kornstørrelsesfordelingene i Figur 44 viser samtlige 5 sedimentkjerner.

KB øst for Utsira Nord

R3200MC07 har høy andel finstoff i hele sedimentkjernen, med mer enn 90 % finstoff gjennom hele sedimentkjernen. Dermed kan sedimentene karakteriseres som slam.

NS-SK-Sør_UT-1, Skagerrak

R3310MC11 har varierende kornstørrelse. Det er høy andel av silt og leir øverst og i de 4 prøvene fra 9-10 cm til 46-47 cm kjernedybde. I prøvene ved 2-3 cm og 4-5 cm kjerne dybde er det lavere andel leir og silt, mens sand utgjør henholdsvis 25 % og 32 %. Dette kan tyde på variasjon i sedimentasjonsforholdene med økt strøm i prøvene ved 2-3 cm og 4-5 cm dybde, og mer rolige avsetningsforhold i den øvrige delen av kjernen.

R3328MC12 har generelt høy andel av silt varierende fra 67 til 90 % og leir varierende fra 6 til 9 %, mens andel sand utgjør fra 1 til 28 %. Prøven fra kjernedybde 14-15 cm har høyest andel sand, hvilket kan tyde på endring i sedimentasjonsforholdene i dette nivået. De øvrige prøvene i den 47 cm lange kjernen med høy andel finstoff tyder på mer rolig sedimentasjonsmiljø.

R3345MC14 har siltinnhold varierende fra 80 til 91 % silt i den 43 cm lange kjernen. Leir utgjør 8 – 10 % av sedimentene mens sand utgjør fra 0 % i den øverste prøven til 10 % i prøven fra 14-15 cm kjernedybde. Generelt tyder det på stabile avsetningsforhold i hele denne kjernen.

NS-SK-Nord_IT-1, Skagerrak

R3365MC15 har stabilt høy andel av silt, med 87 - 91 % i samtlige prøver i den 47 cm lange sedimentkjernen. Leir utgjør 6,7 – 11,6 %, mens det kun er en liten andel sand fra mindre enn 1 % til 2,9 %.

Figur 44. Kornstørrelsesfordeling med leir (<2 μ m), silt (2-63 μ m), sand (63-2000 μ m) og grus (>2000 μ m) i 5 sedimentkjerner.

4.3.3 Total organisk karbon, karbonat og svovel

Innhold av organisk karbon, karbonat og svovel er viktige parametere som forteller noe om avsetningen i kjernene over tid: hvor stabile avsetningsforholdene er med tanke på tilførsel av organisk materiale til sedimentene, samt tilførsel av karbonat fra organismer.

Innholdet av total organisk karbon (TOC), total svovel (TS) og karbonat for de 5 sedimentkjernene er presentert i Figur 45.Total svovel (TS) følger i høy grad TOC, og er mest sannsynlig et uttrykk for binding av svovel i sedimentene som følge av sulfatreduserende bakteriell nedbryting av organisk materiale øverst i sedimentene.

Figur 45. Leco-analyser som viser total organisk karbon (TOC), karbonat og total svovel (TS) i vektprosent i 5 sedimentkjerner. X-skalaen (vektprosent) er logaritmisk.

KB øst for Utsira Nord

R3200MC07 har relativt stabile TOC-verdier varierende fra 1,4 til 1,5 vektprosent i de 6 øverste prøvene og 1,07 vektprosent i den nederste prøven (46-47 cm). Karbonat varierer fra 12,8 til 13,8 vektprosent i hele kjernen, mens andel svovel varierer fra 0,24 til 0,31 vektprosent.

NS-SK-Sør_Ut-1, Skagerrak

R3310MC11 har TOC varierende fra 1,57 til 2,12 vektprosent og svakt økende mot toppen av sedimentkjernen. R3328MC12 har relativt stabile TOC-verdier varierende fra 2,09 til 2,57 vektprosent.

R3345MC14 har TOC varierende fra 2,09 vektprosent nederst til 2,23 vektprosent, og har dermed en relativt stabil TOC-konsentrasjon.

Når det gjelder andel karbonat, så har R3310MC11 et innhold varierende fra 10,58 til 15,17 vektprosent, mens R3328MC12 har et relativt stabilt karbonatinnhold varierende fra 12,5 til 14,42 vektprosent. R3345MC14 har et karbonatinnhold fra 11,33 til 13,92 vektprosent (Figur 36).

Total svovel (TS) i R3310MC11 varierer fra 0,219 til 0,319 vektprosent og med høyeste konsentrasjoner øverst i sedimentkjernen.

NS-SK-Nord_IT-1, Skagerrak

R3365MC15 har stabile TOC-verdier varierende fra 1,99 til 2,06 vektprosent. Andel karbonat varierer fra 12,75 til 14,42 vektprosent.

Oppsummert så har de 4 stasjonene fra Skagerrak alle relativt stabile karbonatinnhold, noe som indikerer stabile avsetningsforhold.

4.3.4 Blyisotop 210 (²¹⁰Pb), cesiumisotop 137 (¹³⁷Cs) og akkumulasjonsrater

Bestemmelse av sediment akkumulasjonsrater i utvalgte sedimentkjerner er viktig for å vurdere om det skjer tilførsel av sedimenter, og hvorvidt denne tilførselen er stabil eller preget av perioder med manglende avsetning. Daterte sedimentkjerner gir også informasjon om tilførsel av forurensende stoffer i moderne tid.

Alderen på de øverste sedimentlagene og akkumulasjonsrater kan bestemmes ved måling av ²¹⁰Pbaktiviteten i sedimentene. Isotopen ²¹⁰Pb har en halveringstid på 22,3 år. Bakgrunnsverdien for ²¹⁰Pb bestemmes ut fra mengden av bakgrunnsstråling ²¹⁰Pb («supported» ²¹⁰Pb), som er uavhengig av sedimentasjon. Bestemmelsen av ²¹⁰Pb-bakgrunnsstråling skjer fra de dypere sjiktene i sedimentene, hvor konsentrasjonen er konstant fordi all ²¹⁰Pb («unsupported» ²¹⁰Pb) fra atmosfærisk nedfall er nedbrutt.

I tillegg til ²¹⁰Pb-datering, ble cesiumisotoper (¹³⁷Cs) målt i alle kjernene for å identifisere begynnelsen av atomprøvesprengninger i 1950- og 1960-årene. I moderne tid er disse sprengningene den største kilden til radioaktiv forurensing av miljøet og det største utslaget er i 1963. Økte konsentrasjoner av ¹³⁷Cs i marine sedimenter kan ikke bare indikere begynnelsen av atomprøvesprengninger, men også radioaktive ulykker i Tsjernobyl (Ukraina) i 1986, og Fukushima (Japan) i 2011.

Datering og bestemmelse av akkumulasjonsrater ble gjennomført på til sammen 4 sedimentkjerner (Tabell 2): R3200MC07 (KB øst for Utsira Nord), R3310MC11 og R3328MC12 (NS-SK-Sør_UT-1 i Skagerrak), R3365MC15 (NS-SK-Nord_IT-1, Skagerrak).

R3200MC07, KB øst for Utsira Nord

R3200MC07 har middels høy ²¹⁰Pb-aktivitet (Figur 46) med bakgrunnsnivå under 7-8 cm. Alder versus dyp er mulig å dra ned til 7 cm, som vist i Figur 47. Alderen for dette dypet er beregnet til 1900, slik at den beregnede sedimentasjonsraten for R3200MC07 blir 0,6 mm/år i perioden 1900 – 2023. ¹³⁷Cs er registrert i de øverste 3 cm og har en konsentrasjon på 7 Bq/kg sediment i 0 – 1 cm (Figur 48). ¹³⁷Cs-toppene ved 0-2 cm (Figur 46) kan kanskje knyttes til Fukushima i 2011.

Figur 46. Tetthet, unsupported ²¹⁰Pb- og ¹³⁷Cs-aktivitetsmålinger i R3200MC07, KB øst for Utsira Nord.

Figur 47. Alder versus dyp i sedimentene i R3200MC07, KB øst for Utsira Nord.

Figur 48. ¹³⁷Cs versus ²¹⁰Pb-alder i R3200MC07, KB øst for Utsira Nord.

R3310MC11, NS-SK-Sør_UT-1, Skagerrak

²¹⁰Pb i R3310MC11 avtar eksponentielt fra toppen av sedimentkjernen til 20 cm under overflaten (Figur 49). Omregnet alder versus dyp er vist i Figur 50. Her gir de målbare unsupported ²¹⁰Pb-data tilsvarende 1902 og en sedimentasjonsrate på 1,7 mm/år for denne tidsperioden. ¹³⁷Cs profilen i Figur 49 viser et maksimum på 15 Bq/kg sediment i prøven ved 5-6 cm, tilsvarende 2008 (Figur 51). Denne ¹³⁷Cs-toppen kan muligens knyttes til Fukushima-utslippet i 2011. Bioturbasjon kan ha dratt ned ¹³⁷Cs dypere i sedimentene.

Figur 49. Tetthet, unsupported ²¹⁰Pb- og ¹³⁷Cs-aktivitetsmålinger i R3310MC11, NS-SK-Sør_UT-1, Skagerrak.

Figur 50. Alder versus dyp i sedimentene i R3310MC11, NS-SK-Sør_UT-1, Skagerrak.

Figur 51. ¹³⁷Cs versus ²¹⁰Pb-alder i R3310MC11, NS-SK-Sør_UT-1, Skagerrak.

R3328MC12, NS-SK-Sør UT-1, Skagerrak

Denne stasjonen har høy unsupported ²¹⁰Pb-aktivitet (Figur 52) og når bakgrunnsnivå 30 cm under toppen av sedimentkjernen. Alder vs. dyp i sedimentkjernen gir en alder på ca. 1915 ved 29-30 cm dybde. Her gir unsupported ²¹⁰Pb en sedimentasjonsrate på 2,7 mm/år (Figur 53). Bruk av aldersmodellen fra ²¹⁰Pb fører til at ¹³⁷Cs maksimumsverdi på 12 Bq/kg sediment ved 11-12 cm (Figur 54) tilsvarer utslippet fra Tsjernobyl i 1986. ¹³⁷Cs i intervaller over og under de høyeste verdiene ved 11-12 cm kan muligens knyttes til Fukushima-utslippet (2011) og atomprøvesprengningene på 1950- og 1960-tallet. Bioturbasjon har sannsynligvis spredt ¹³⁷Cs i sedimentene.

Figur 52. Tetthet, unsupported ²¹⁰Pb- og ¹³⁷Cs-aktivitetsmålinger i R3328MC12, NS-SK-Sør_UT-1, Skagerrak.

Figur 53. Alder versus dyp i sedimentene i R3328MC12, NS-SK-Sør_UT-1, Skagerrak.

R3365MC15, NS-SK-Nord IT-1, Skagerrak

Denne stasjonen nær Sørlandskysten (Figur 1) har middels høye unsupported ²¹⁰Pb-verdier gjennom hele sedimentkjernen på 50 cm (Figur 55). ¹³⁷Cs har en konsentrasjon på 9 Bq/kg sediment ved 0-1 cm og på 20 Bq/kg sediment dypest i sedimentkjernen (Figur 56). Alder vs. dyp i Figur 56 gir en meget høy sedimentasjonsrate på 20 mm/år. Det er stor usikkerhet knyttet aldersmodellen fordi verken ²¹⁰Pb eller ¹³⁷Cs når bakgrunnsnivåene selv om det er en nedadgående trend i intervallet 40 – 50 cm intervallet i kjernen (Figur 55).

Figur 55. Tetthet, ²¹⁰Pb-unsupported og ¹³⁷Cs-aktivitetsmålinger i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak.

Figur 56. Alder versus dyp i sedimentene i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak.

Figur 57. ¹³⁷Cs versus ²¹⁰Pb-alder i R3365MC15A, NS-SK-Nord_IT-1, Skagerrak.

Oppsummeringen av dateringsanalysene fra de 4 daterte sedimentkjernene i Tabell 10, viser at det er ett dårlig, to middels og ett godt dateringsresultat. Resultatene påvirkes av bioturbasjon og tråling. Stasjon R3365 ligger i et område hvor det er høy trålaktivitet.¹³⁷Cs-dataene er verdifulle i kombinasjon med unsupported ²¹⁰Pb for aldersdatering. De beregnede sedimentasjonsratene er vist i Tabell 10 og Figur 58, sammen med sedimentasjonsrater fra tidligere ²¹⁰Pb-daterte sedimentkjerner og i kartutsnittet i Figur 52.

Tabell 10. Daterte sedimentkjerner fra MAREANO-tokt i 2023. LSR: Lineær sedimentasjonsrate for intervaller karakterisert som pålitelige basert på ²¹⁰Pb-aktivitetskurver. Dateringskvalitet karakteriseres av aldersmodeller som viser en tydelig eksponentiell nedgang av ²¹⁰Pb-aktivitet og langsom utflating av ¹³⁷Cs-konsentrasjon.

Stasjon	Område	LSR (mm/år)	Dateringens kvalitet
R3200MC07	KB øst for Utsira Nord	0,6	middels
R3310MC11	NS-SK-Sør_UT-1	1,7	god
R3328MC12	NS-SK-Sør_UT-1	2,7	god
R3365MC15	NS-SK-Nord_IT-1	20,0	dårlig

Figur 58.Sedimentasjonsrater basert på unsupported ²¹⁰Pb-data i hele det kartlagte Mareano-området. Daterte sedimentkjerner fra 2023-toktene er markert med rød ring i den røde firkanten i Nordsjøen. Detaljert kart vises i Figur 59.

Figur 59. Sedimentasjonsrater i kartutsnittet vist i Figur 58. Stasjonene fra 2023-toktene (områdene KB øst for Utsira Nord og Skagerrak) er markert med rød ring.

4.3.5 Tungmetaller, arsen og barium i sedimentkjerner

For å vurdere dagens forurensingstilstand sammenlignet med tidligere tider er de fire ²¹⁰Pb-daterte sedimentkjernene R3200MC07 (KB øst for Utsira Nord), R3310MC11 og R3328MC12 (NS-SK-Sør_UT-1) og R3365MC15 (NS-SK-Nord_IT-1), samt en sedimentkjerne uten dateringsdata, R3345MC14 (NS-SK-Sør_UT-1) analysert for innhold av tungmetaller, arsen og barium. Analyseresultatene finnes i Vedlegg 2. Informasjon om kjernelengde finnes i Tabell 2.

R3200MC07, KB øst for Utsira Nord (datert sedimentkjerne)

Stasjonen R3200 er lokalisert i KB øst for Utsira Nord (Figur 1). Minimum, gjennomsnitt, median og maksimum konsentrasjoner for en rekke tungmetaller, arsen og barium er vist i Tabell 11. Dybdeprofilene for tungmetaller, arsen og barium er presentert sammen med andel finstoff, total organisk karbon (TOC) og karbonat. De tre sediment-parameterne er tatt med for evt. å kunne forklare endringene i de analyserte metallene.

Ba-, Cr-, Cu-, Ni- og Zn-konsentrasjonene er erfaringsmessig sterkt assosiert med andel finstoff. Metallene Cr, Cu, Ni og Zn, samt elementet Ba er relativt stabile gjennom hele sedimentkjernen (Figur 60). Dataene i Tabell 11 viser også at det er lite forskjeller i minimum, gjennomsnitt, median- og maksimum verdier for de 4 metallene og barium.

Hg og Pb øker svakt fra 46-47 cm til og med 9-10 cm, og mer markant mot overflaten. Prøven på 9-10 cm er fra midten-slutten av 1800-tallet basert på ²¹⁰Pb-dateringen i Figur 48. Hg har maksimal konsentrasjon øverst med 0,034 mg/kg sediment tørrvekt i 0-1 cm prøven, tilsvarende tilstandsklasse I (bakgrunn). Pb har maksimal konsentrasjon i overflateprøven (0-1 cm) med 43,0 mg/kg sediment tørrvekt. De økte Hg- og Pb-

konsentrasjonene følger et vanlig mønster i de marine sedimentkjernene i Mareano (eksempelvis Jensen og Bellec, 2021). As øker fra 7,8 mg/kg sediment tørrvekt nederst i sedimentkjernen til ca. 11,7 mg/kg sediment tørrvekt ved 4-5 cm dybde (Figur 60). Det er relativt stabil As-konsentrasjon i hele kjernen, som vist for gjennomsnitt, medianverdi og maksimum konsentrasjon i Tabell 11. Cd er under deteksjonsgrensen på 0,1 mg/kg sediment tørrvekt i samtlige de analyserte prøvene. Dermed kan heller ikke gjennomsnitt eller median-verdi beregnes.

Parameter	As	Ва	Cd	Cr	Cu	Hg	Ni	Pb	Zn
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Min	7,8	52,8	<0,1	44,7	12,1	0,0128	30,8	19,5	67,8
Gjennomsnitt	10,2	64,2	i. k.	49,2	14,3	0,0190	34,2	30,3	78,40
Median	10,4	62,7	i. k.	50,5	14,5	0,0151	35,2	28,6	79,1
Maks	11,7	75,4	<0,1	51,7	15,4	0,0340	36,6	43,0	84,9
Antall prøver	7								

Tabell 11. Sedimentkjerne R3200MC07 (0-47 cm): minimums-, gjennomsnitts-, median- og
maksimumsverdier for tungmetaller, arsen og barium. i.k.: ikke kvantifiserbar.

Figur 60. Tungmetall, arsen, barium, TOC, karbonat og finstoff i R3200MC07 (0-47 cm) fra KB øst for Utsira Nord. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰Pbdateringsanalysene presentert i kap. 4.3.4.

R3310MC11, NS-SK-Sør UT-1 (datert sedimentkjerne)

Stasjonen R3310 ligger i Skagerrak. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for tungmetaller, arsen og barium er presentert i Tabell 12.

Metallene Cr, Cu og Ni har konstante konsentrasjoner, som vist i Tabell 12 og Figur 61. Zn minker i konsentrasjon fra bunn til topp fra 140 mg/kg sediment til 110 mg/kg sediment.

Hg øker fra et bakgrunnsnivå på 0,018 mg/kg sediment i den nederste prøven (46-47 cm) til maksimalt 0,094 mg/kg sediment ved 9-10 cm under overflaten. Deretter minker Hg-konsentrasjonen mot toppen av sedimentkjernen til 0,053 mg/kg sediment øverst, men fremdeles markant høyere enn 0,018 mg/kg sediment nederst. Pb øker fra et antatt bakgrunnsnivå på 24,9 mg/kg sediment til ca. 3 ganger så høy konsentrasjon på 72 mg/kg sediment ved 9-10 cm dybde, for så å minke i konsentrasjon til 52 mg/kg sediment øverst (0-1 cm) (Figur 61). Høye Hg-konsentrasjoner i Skagerrak kan muligvis knyttes til høye nivåer av Hg i Kattegat (Cato (1992) i Thorsnes og Klungsøyr (1997)). En mulig forurensningskilde kan også være utslipp fra kjemisk industri og treforedling (Leipe (2013). Maksimale Hg- og Pb-konsentrasjoner tilsvarer rundt 1960 iht.²¹⁰Pb dateringsanalysene.

As varierer fra 11,2 til 53,5 mg/kg sediment (4-5 cm) (Figur 61). Cd er under deteksjonsgrensen på 0,1 mg/kg sediment for 3 av 7 prøver og med målbare konsentrasjoner i de 4 nederste prøvene.

Parameter	As	Ва	Cd	Cr Cu		Hg	Ni	Pb	Zn
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Min	11,2	62,6	<0,1	52,8	14,7	0,0176	39,2	24,9	82,8
Gjennomsnitt	35,8	135	i.k.	55,4	18,9	0,0634	40,4	56,5	115
Median	44,6	145	i.k.	56,4	20,0	0,0732	40,1	62,3	119
Maks	53,5	213	0,13	57,1	21,3	0,0948	41,8	74,7	140
Antall prøver	7								

Tabell 12. Sedimentkjerne R3310MC1 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. I.k.: ikke kvantifiserbar

Figur 61. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R3310MC11 (0-47cm) fra NS-SK-Sør_UT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰Pb-dateringsnalysene presentert i kap. 4.3.4.

R3328MC12, NS-SK-Sør_UT-1 (datert sedimentkjerne)

Plassering av stasjonen R3328 er vist i Figur 2. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for tungmetaller, arsen og barium er presentert i Tabell 13.

Cr, Cu, Ni og Zn har relativt konstante konsentrasjoner gjennom sedimentkjernen (Tabell 13, Figur 62). Ba øker fra et antatt bakgrunnsnivå på 65,3 mg/kg sediment dypest i sedimentkjernen (46–47 cm) til maksimal konsentrasjon på 250 mg/kg sediment ved 4-5 cm, tilsvarende ca. år 2000, når dateringsanalyseresultatene brukes (kap. 4.3.4). Hg øker fra 0,028 mg/kg sediment nederst (46-47 cm) til 0,0938 mg/kg sediment ved 14-15 cm, som til0svarer ca. 1965. Det er en mindre reduksjon i Hg-konsentrasjon mot toppen av sedimentkjernen, men stadig vesentlig høyere enn antatt bakgrunnsnivå nederst. Pb øker fra 34,8 mg/kg sediment til maksimalt 66,8 mg/kg sediment veed14-15 cm, for deretter å avta til 52,9 mg/kg sediment ved 0-1 cm. Dette er et vanlig forløp for Pb-konsentrasjonen, med høyeste konsentrasjon noen cm under overflaten. Reduksjon i konsentrasjonen øverst i sedimentkjernen tilskrives forbud mot bruk av blyholdig bensin fra 1970-tallet i store deler av den industrialiserte verden. Den maksimale Pb-konsentrasjon ved 14-15 cm dybde tilsvarer 1965, når ²¹⁰Pb dateringen brukes. Økning i både Hg- og Pb-konsentrasjoner i den øvre delen av sedimentkjernen tilskrives tilførsel fra fossil energibruk (kullforbrenning for Hg sin del, samt påvist tilførsel av Hg fra flere europeiske elver som har utløp i Østersjøen og Kattegat (Thorsnes og Klungsøyr, 1997). Tilførsel av Pb tilskrives utslipp fra blyholdig bensin. As-konsentrasjonen varierer fra 10,5 til 14,7 mg/kg sediment i de nederste 4 prøvene (9-10 cm - 46-47 cm), mens konsentrasjonen i de øverste 3 prøvene varierer fra 30,1 – 36,0 mg/kg sediment. Cd er til stede i målbar konsentrasjon i 2 av 7 prøver med 0,11 mg/kg sediment ved 9-10 cm og ved 24-25 cm (Figur 62) med manglende data i de øverste 3 prøvene, 14-15 cm og nederste prøve ved 46-47 cm (<0,1 mg/kg sediment).

Tabell 13. Sedimentkjerne R3328MC12 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.k.: ikke kvantifiserbar.

Parameter	As	Ва	Cd	Cr Cu		Hg Ni		Pb	Zn
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Min	10,5	65,3	<0,1	53,7	14,6	0,0280	36,1	34,8	83,0
Gjennomsnitt	21,0	188,9	i.k.	56,8	18,8	0,0734	37,3	55,0	108,7
Median	14,7	219,0	i.k.	56,7	19,3	0,0756	37,2	55,0	108,0
Maks	36,0	250,0	0,11	59,1	20,4	0,0938	38,6	66,8	123,0
Antall prøver	7								

Figur 62. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjernen fra stasjon R3328MC12 (0-47 cm) fra NS-SK-Sør_UT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰Pb-dateringsanalysene presentert i kap. 4.3.4.

R3345MC14, NS-SK_Sør_UT-1

Stasjon R3345 ligger i Skagerrak (NS-SK-Sør_UT-1) (Figur 2).

Minimum, gjennomsnitt, median og maksimum konsentrasjoner for tungmetaller, arsen og barium er presentert i Tabell 14. Cr, Cu og Ni har stabile konsentrasjoner i hele sedimentkjernen (Tabell 14, Figur 63). Zn har stabile konsentrasjoner i prøvene med unntak av den dypeste (42-43 cm), som har en noe lavere konsentrasjon med 82 mg/kg sediment. Ba øker markant fra ca. 72 mg/kg sediment nederst til 204 mg/kg sediment ved 2-3 cm dyp. Den markante økningen skjer mellom 9-10 cm og 4-5 cm.

Hg øker fra 0,0218 mg/kg sediment nederst (42-43 cm) til maksimalt 0,0916 mg/kg sediment ved 9-10 cm for så å minke til 0,0652 mg/kg sediment i overflaten (0-1 cm). Høye Hg-konsentrasjoner i Skagerrak kan muligvis knyttes til høye nivåer av Hg i Kattegat (Cato (1992) i Thorsnes og Klungsøyr (1997)). En mulig forurensningskilde kan også være utslipp fra kjemisk industri og treforedling (Leipe (2013).

Pb har en tilsvarende økning fra 30,2 mg/kg sediment nederst til maksimalt 72,5 mg/kg sediment ved 9-10 cm og deretter en reduksjon i konsentrasjon i de tre øverste prøvene med 57,7 mg/kg sediment i overflateprøven (Figur 63). Som for de to tidligere presenterte stasjonene i NS-SK-Sør_UT-1, R3310 og R3328, er maksimal Hg- og Pb-konsentrasjoner samtidige (Figur 63).

As-konsentrasjonen varierer fra minimum 11,1 mg/kg sediment ved 14-15 cm, og høyeste konsentrasjon på 44,2 mg ved 2-3 cm dyp, og generelt betydelig lavere konsentrasjon i de 4 nederste prøvene 9-10 cm, 14-15 cm, 24-25 cm og 42-43 cm (Figur 63). Cd er under deteksjonsgrensen på 0,1 mg/kg sediment i 4 av de 7 prøvene. Høyest konsentrasjon på 0,15 mg/kg sediment er i prøven ved 9-10 cm i sedimentkjernen. Analyseresultatene er under deteksjonsgrensen på 0,1 mg/kg sediment er i de tre øverste prøvene.

Parameter	As	Ва	Cd	Cr	Cu	Hg	Ni	Pb	Zn
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Min	11,1	71,7	<0,1	53,3	14,8	0,0218	37,4	30,2	82,2
Gjennomsnitt	26,4	135	0,14	56,7	19,1	0,0665	38,9	58,5	116
Median	16,7	122	0,14	57,0	19,8	0,0692	38,7	59,6	117
Maks	44,2	204	0,15	59,5	21,3	0,0916	40,4	72,5	136
Antall prøver	7								

Tabell 14. Sedimentkjerne R3345MC14 (0-43 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium.

Figur 63. Tungmetall, arsen, barium, TOC, karbonat og finstoff i R3345MC14 (0-43 cm) fra NS-SK-Sør_UT-1 i Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk.

R3365MC15, NS-SK-Nord_IT-1 (datert sedimentkjerne)

Den ²¹⁰Pb-daterte kjernen R3365MC15 ligger tett inn til kysten på Sørlandet i det som heter NS-SK-Nord_IT-1. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for tungmetaller, arsen og barium er presentert i Tabell 15. Merk at dateringen er dårlig (Tabell 10), og at det ikke kan utelukkes at sedimentene i dette området er kraftig påvirket av tråling. Derfor må resultatene av analysene i R3365 (Figur 64) anses som usikre når det gjelder Cr, Cu, Ni, Zn og Ba. Tråling kan ha homogenisert sedimentene slik at nivåene er relativt konstante. Ba har relativt konstant konsentrasjon fra topp til bunn. Tilsvarende er det lite variasjoner i Hg og Pb gjennom sedimentkjernen, sannsynligvis også knyttet til mulig påvirkning fra tråling. Hg har relativt høye nivåer varierende fra 0,0944 til 0,1330 mg/kg sediment med den høyeste konsentrasjon i den nederste prøven (46-47 cm). Pb har tilsvarende høyeste konsentrasjon nederst med 51 mg/kg sediment og avtar litt til ca. 42 mg/kg sediment i de øverste 3 prøvene.

As varierer fra 10,6 til 18,8 mg/kg sediment, den høyeste konsentrasjon ved 9-10 cm, og svakt avtakende mot toppen, med 15,7 mg/kg sediment øverst. Cd er under deteksjonsgrensen på 0,1 mg/kg sediment i samtlige 7 prøver.

Parameter	As	Ва	Cd	Cr	Cu	Hg	Ni	Pb	Zn			
rarameter	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
Min	10,6	115	<0,1	51,6	17,1	0,0944	31,5	42,1	100			
Gjennomsnitt	15,6	120	<0,1	53,6	17,9	0,1033	32,8	44,6	105			
Median	15,7	121	<0,1	53,4	17,7	0,0970	32,7	42,9	102			
Maks	18,8	122	<0,1	55,9	18,7	0,1330	34,0	51,0	116			
Antall prøver	7											

Tabell 15. Sedimentkjerne R3365MC15 (0-47 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium.

Figur 64. Tungmetall, arsen, barium, TOC, karbonat og finstoff i den ²¹⁰Pb-daterte sedimentkjernen R3365MC15 fra NS-SK-Nord_IT-1, Skagerrak. X-skalaen (konsentrasjoner) er logaritmisk. Årstallene til høyre er basert på ²¹⁰Pb-dateringsanalysene presentert i kap. 4.3.4. Dateringen anses at være dårlig (avsnitt 4.3.4). Kjernelengden er 47 cm.

5 OPPSUMMERING

På Mareano-toktene 2023001005 og 2023001009 (FF G.O. Sars) i 2023 ble det tatt sedimentkjerner fra totalt 11 stasjoner i Nordsjøen i områdene KB øst Utsira Nord, NSJ-1 og Skagerrak (NS-SK-Sør_UT-1 og NS-SK-Nord_IT-1).

Prøvetatte sedimenter i Skagerrak består av silt, mens prøvene fra KB øst for Utsira Nord består av sandholdig silt. Den ene stasjonen fra NSJ-1 består av siltholdig sand. TOC verdiene i overflatesedimentene i Skagerrak varierer fra i underkant av 2 vektprosent til 2,4 vektprosent. Andel karbonat utgjør 10 – 15 vektprosent. Resultatene av de geokjemiske analysene av overflatesedimenter viser høye konsentrasjoner av As i prøvene fra Skagerrak, tilsvarende Miljødirektoratets tilstandsklasse III. For de øvrige metallene Cd, Cu, Cr, Hg, Ni, Pb og Zn er nivåene lave, tilsvarende tilstandsklasse I eller II.

Analyser av 4 av 5 sedimentkjerner fra KB øst for Utsira og i Skagerrak viser at det er stabile avsetningsforhold med stabile kornstørrelsesfordelinger, TOC og andel karbonat. Røntgeninspeksjon av i sedimentkjerner viser at de er bioturbert. ²¹⁰Pb dateringsanalysene av sedimentkjerner fra Skagerrak viser høye til meget høy sedimentasjonsrater med 1,7 millimeter/år og 2,7 millimeter/år i NS-SK-Sør_UT-1, og 20 millimeter/år i NS-SK-Nord_IT-1. Det er usikkert om den sistnevnte kjernen representerer troverdige dateringsresultater pga. påvist høy trålaktivitet i dette området. En datert sedimentkjerner fra KB øst for Utsira har en sedimentasjonsrate på 0,6 millimeter/år, noe mindre enn i Skagerrak.

Hg og Pb viser en økning mot nåtid i 4 av de 5 analyserte sedimentkjerner. Økningen skyldes sannsynligvis menneskelig aktivitet knyttet til bruk av fossile energikilder. Økning i Hg kan muligvis også tilskrives kjemisk industri og treforedling med utslipp til det marine miljøet (Leipe (2013). Økning i Hg- og Pb-konsentrasjoner er sammenfallende i tid. Tidsmessig skjer økningen rundt år 1900, når resultatene ses opp mot dateringsresultatene fra ²¹⁰Pb-analysene.

Ba har anrikning i overflatesedimentene i Skagerrak (NS-SK-Sør_UT-1). Dette tyder på tilførsel i nyere tid, med en anrikning som er 3-4 ganger høyere i forhold til bakgrunnsnivået. Økningen i Ba-konsentrasjoner skyldes mest sannsynlig tilførsel av barytt tilsatt boreslam, og ført med havstrømmer fra Nordsjøen, hvor boring etter olje og gass begynte tidlig på 1970-tallet. Alle øvrige metaller (Cd, Cr, Cu, Ni og Zn) er til stede med stabile konsentrasjoner i kjernene. Det tyder på primært naturlig innhold. As øker i overflatesedimentene, spesielt i Skagerrak. På grunn av den dårlige dateringsanalysen, som sannsynligvis er knyttet til høy trålaktivitet i området fra NS-SK-Nord_IT-1, tett på kysten, er det vanskelig å se noen trender for metallene her.

6 **REFERANSER**

Andersen T. J., 2017: Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Bellec V., Bøe R., Rise L., Lepland A., Thorsnes T. and Bjarnadottír L. R., 2017. Seabed sediments (grain size) of Nordland VI, offshore north Norway. Journal of maps, vol. 13, No. 2, p. 608-620. www.blueoceansociety.org (2018)

Braastad, G. 2000: Kort innføring i toksikologi – økotoksikologisk risikovurdering – veiledning – Del IIA. SFTrapport TA 1756, 46 s.

Bøe R., Dolan M., Thorsnes T., Lepland A., Olsen H., Totland O. & Elvenes S. 2010: Standard for geological seabed mapping offshore. NGU-rapport 2010.033, 15 s.

Dehairs, F., Chesselet, R., and Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the ocean. Earth Planetary Science Letters, vol. 49, s. 528 – 550.

Geonorge.no, 2021. Produktspesifikasjon_Bunnsedimenter_kornstørrelse. 53 s.

Hertweck G., Wehrmann A. and Liebezeit G., 2007. Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to *Chondrites* group traces. Palaeogeography, Palaeoclimatology, Palaeoecology 245. Pp. 382-389.

Huserbråten M., Hjelset A. M., Danielsen H.E.H., Hvingel C. and Agnalt A.L., 2023. Modelled dispersal of snow crab (Chionoecetes opilio) larvae and potential settlement areas in the western Barents Sea. ICES Journal of Marine Science, fsad062.

Haanes, H., Jensen, H. K. B., Lepland A. and Heldal, H. E., 2023. Increased barium levels in recent marine sediments from the Norwegian and Barents Seas suggest impact of hydrocarbon drilling and production. Marine Pollution Bulletin, Vol. 186, 114478. <u>https://doi.org/10.1016/j.marpolbul.2022.114478</u>

Jensen H. K. B. og Bellec V., 2021. Miljøkjemiske data og dateringsresultater fra Norskehavet – MAREANO. NGU-rapport 2021.028, 70 sider.

Jensen H. K. B. og Bellec V., 2022. Miljøgeokjemiske data og dateringsresultater fra bunnsedimenter i områdene Garsholbanken, Eggakanten vest for Aktivneset, NH01-BO1, KB Folla, KB Sklinna – Vestfjorden, Vestfjorden Ytre, Spitsbergenbanken, Kirkegården og Kratere N – Mareano. NGU-rapport 2022.023, 119 sider.

Knies, J., Jensen, H.K.B., Finne, T.E., Lepland, A. & Sæther, O. M. 2006: Sediment composition and heavy metal distribution in Barents Sea surface samples: Results from Institute of Marine Research 2003 and 2004 cruises. NGU-report 2006.067, s. 1-35.

Lepland, A., Sæther O. M. & Thorsnes T. 2000: Accumulation of barium in recent Skagerrak sediments: sources and distribution control. Marine Geology, vol. 163, s. 13 – 26.

Leipe T., Moros M., Kotilainen A., Vallius H., Kabel K., Endler M., Kowalski N. 2013: Mercury in Baltic Sea sediments - Natural background and anthropogenic impact, Geochemistry, vol. 73, s. 249-259, https://doi.org/10.1016/j.chemer.2013.06.005.

Molvær, J., Knutzen, J., Magnusson, J., Rygg, B., Skei, J. & Sørensen, J. 1997: Klassifisering av miljøkvalitet i fjorder og kystvann. Veiledning. SFT-rapport 97:03, TA-1467, 36 sider.

Norsk oljehistorie i korte trekk, 2002. <u>http://www.ptil.no/ord-og-uttrykk/norsk-oljehistorie-i-korte-trekk-article882-38.html</u>.

Nuernberg C. C., Bohrmann G., Schlueter M. og Frank M., 1997. Barium accumulation in the Atlantic sector of the Southern Ocean. Results from 190,000-year records. Paleoceanography. Vol. 12 (4), s. 594 – 603.

Olsgård F. and Gray J., 1995. A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Marine Ecology Progress Series, vol. 122, s. 277 – 306.

Rise, L. og Brendryen, J. 2013. Leirinnhold i jordarter – en sammenlignende studie med vekt på Coulter Laser 200 og Sedigraph, og forslag til beregning av ekvivalent leirinnhold i prosent. NGU Rapport 2013.012, 35 sider.

Rye H., 1996. Miljøeffekter av utslipp fra borekjemikalier. Rapport fra OLF. IKU Petroleumsforskning. Rapport nr. 42.4053.00/01/96. 98 sider.

Sæther O. M., Faye G., Thorsnes T., Rise L., Longva O. and Bøe R., 1996. Regional distribution of manganese, phosphorus, heavy metals, barium, and carbon in sea-bed sediments (0-2 cm) from the northern part of the Norwegian Skagerrak. Geological Survey of Norway Bull., no. 430, p. 103-112.

Thorsnes T. and Klungsøyr J., 1997. Contamination of Skagerrak sediments due to man-made inputs during the last 200 years. In: O. Longva and T. Thorsnes (Editors), Skagerrak in the past and at the present - an integrated study of geology, chemistry, hydrography and microfossil ecology. Geological Survey of Norway. Special Publication, vol. 8, p. 52-79.

Veileder Miljødirektoratet M-608, 2016. Grenseverdier for klassifisering av vann, sediment og biota – revidert 30.10.2020. 13 sider. (lenke <u>https://www.miljodirektoratet.no/globalassets/publikasjoner/m608/m608.pdf</u>).

NGU-rapport 2024.027

Vedlegg 1

Prøveliste og analyseresultater fra NGUs laboratorium

(ref. analyseoppdrag 2024.0024)

Data for naturlige standarder følger med i analyserapportene.

Prøveliste for analyser, tester og preparater

ANALYSEKONTRAKT:

2024.0024

 Prosjektnr.:
 311763

 Prosjektleder:
 Henning K. B. Jensen

 Innlevert av:
 Henning K. B. Jensen

 Dato:
 08.02.2024

 Kundens egen prøveserie-ID:
 Ansvarlig for prøvetaking:

 Marki Datking:
 Marki fortale production for the provide lange to the provide lan

Merk! Det kan være fordelaktig å fordele oppdraget over flere kontrakter dersom analyse-prosedyrene avviker fra prøve til prøve.

	NGU		UTM-koordinater		PRØVEBESKRIVELSE:	SPESIFISERING AV OPP	DRAG	tidligere	
Løpenr.	prøvenr.	Prøve-ID	EUR	EF89 (WGS	84)	Bergartstype, sediment,	Analyse	Slin	- oppdragsnr. frysetørking
			Sone+N/S	Øst (m)	Nord (m)	jord, vann mm.			iryseterking
1		Hynne				sediment Trondheimsfjorden	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV-AAS		
2		Minn				Nordkyn, Finnmark	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	AAS	
3		Tana				rød tanaskifer fra Tana, Finmark	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	AAS	
4		Hynne 2023				sediment Trondheimsfjorden	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	AAS	
5		N-std				sediment Baretnshavet	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	AAS	
6	190118	R3188MC05_0-1 cm		4.93029	59.5761	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
7	190303	R3190MC09A_0-1cm		4.82892	59.33213	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	AAS	2023.0136
8	190169	R3196MC06_0-1 cm		5.00457	59.11875	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
9	190223	R3200MC07A_0-1cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
10	190225	R3200MC07A_2-3cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
11	190227	R3200MC07A_4-5cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
12	190232	R3200MC07A_9-10cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
13	190237	R3200MC07A_14-15cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
14	190247	R3200MC07A_24-25cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
15	190269	R3200MC07A_46-47cm		5.0920874	58.972521	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
16	190274	R3224MC08A_0-1cm		6.03407	57.61418	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0075
17	190348	R3303MC10A_0-1cm		9.42637	58.17270	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
18		Hynne				sediment Trondheimsfjorden	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	
19		Minn				Nordkyn, Finnmark	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	
20		Tana				rød tanaskifer fra Tana, Finmark	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	
21		Hynne 2023				sediment Trondheimsfjorden	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	
22		N-std				sediment Baretnshavet	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	
23	190406	R3310MC11A_0-1cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
24	190408	R3310MC11A_2-3cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
25	190410	R3310MC11A_4-5cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
26	190415	R3310MC11A_9-10cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
27	190420	R3310MC11A_14-15cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
28	190430	R3310MC11A_24-25cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
29	190452	R3310MC11A_46-47cm		9.4852987	58.369589	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
30	190456	R3328MC12A_0-1cm		9.9039185	58.230068	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
31	190458	R3328MC12A_2-3cm		9.9039185	58.230068	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0136
32	190460	R3328MC12A_4-5cm		9.9039185	58.230068	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV-	AAS	2023.0136

Prøveliste for analyser, tester og preparater

ANALYSEKONTRAKT:

2024.0024

 Prosjektnr.:
 311763

 Prosjektleder:
 Henning K. B. Jensen

 Innlevert av:
 Henning K. B. Jensen

 Dato:
 08.02.2024

 Kundens egen prøveserie-ID:
 Ansvarlig for prøvetaking:

Merk! Det kan være fordelaktig å fordele oppdraget over flere kontrakter dersom analyse-prosedyrene avviker fra prøve til prøve.

	NGU Brave-ID UTM-koordinater		iter	PRØVEBESKRIVELSE:	SPESIFISERING AV OPP	DRAG	tidligere		
Løpenr.	prøvenr.	Prøve-ID	EUR Sone+N/S	EF89 (WGS Øst (m)	84) Nord (m)	Bergartstype, sediment,	Analyse	Slip	frysetørking
33	190/65	P3328MC12A_9_10cm		0 0030185	58 230068	sediment	Coulter Less appslutning 7 MHNO3 ICP OFS CV		2023 0136
34	190403	D3220MC12A_3-100III		0.0020185	58 230068	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-7773 A A S	2023.0130
35	100480	D3220MC12A_14-150m		0.0020185	58 230068	sediment	Coulter, Leco, oppsiutning 7 MilNO3, ICF OES, CV	-7773 A A S	2023.0130
35	190400	D3220MC12A_24-230m		0.0020185	58 230068	sediment	Coulter, Leco, oppsiutning 7 Millio3, ICF OES, CV	-7773 A A S	2023.0130
37	190502	Hunne		3.3033103	30.230000	sediment Trondheimsfiorden	Coulter, Leco, oppsiutning 7 MHNO3, ICP OES, CV	-745	2023.0130
38		Minn				Nordkyn Einnmark	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	
30		Тара				rød tanaskifer fra Tana Finmark	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	
40		Hunne 2023					Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	
40		N std				sediment Parotashavot	Coulter, Leco, oppsiutning 7 Millio3, ICF OES, CV	-7773 A A S	+
41	100508	P3333MC13A_0_1cm		0 6058705	58 ///0081	sediment	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-443	2023 0136
42	190500	P3345MC14A_0-1cm		10 078356	58 /6866	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	2023.0130
43	190550	P3345MC14A_0-1cm		10.070350	58 /6866	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	2023.0130
44	190500	P3345MC14A_2-5cm		10.070350	58 /6866	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICF OES, CV	-745	2023.0130
45	190502	R3345WC14A_4-50II		10.070350	50.40000	sediment	Coulter, Leco, oppsiutning 7 MilNO3, ICP-OES, CV	-AAG	2023.0130
40	190507	R3345MC14A_9-10011		10.070300	58 46866	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0130
47	190572	R3345MC14A_14-15011		10.070350	58 46866	sediment	Coulter, Leco, oppsiutning 7 Millio3, ICP-OES, CV	-AA3	2023.0130
40	190502	R3345WC14A_24-230III		10.070350	50.40000	sediment	Coulter, Leco, oppsiutning 7 MilNO3, ICP-OES, CV	-AAG	2023.0130
49 50	190000	R3345WC14A_42-430III		0.01692	50.40000	sediment	Coulter, Leco, oppsiutning 7 MilNO3, ICP-OES, CV	-AAG	2023.0130
50	190615	R3305WICTSA_0-TCHI		9.01003	50.3771	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	-445	2023.0130
50	190615	R3303WICTSA_2-30III		9.01003	50.3771	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0130
52	190617	R3305WIC15A_4-50III		9.01003	50.3771	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	-445	2023.0130
53	190622	R3305INIC13A_9-10CITI		9.01003	50.3771	sediment	Coulter, Leco, oppsiutning 7 MINO3, ICP-OES, CV	AAS	2023.0130
54	190627	R3305IVIC 13A_14-13CIII		9.01003	50.3771		Coulter, Leco, oppsiutning 7 MINO3, ICP-OES, CV	-AAS	2023.0130
55	190637	R3305IVIC15A_24-25CM		9.01683	58.3771	sediment	Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	AAS	2023.0130
57	190059	K3303IVIC ISA_40-47 CIII		9.01683	58.3771		Coulter, Leco, oppsiutning 7 MHNO3, ICP-OES, CV	-AAS	2023.0130
58		Minn		-		Nordkyn Finnmark	Coulter, Leco, oppslutning 7 MINO3, ICP-OES, CV	-443	+
59		Tana				rød tanaskifer fra Tana Finmark	Coulter Leco oppsiutning 7 MHNO3 ICP-OES CV	-AAS	+
60		Hynne 2023				sediment Trondheimsfjorden	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES. CV	-AAS	1
61		N-std				sediment Baretnshavet	Coulter, Leco, oppslutning 7 MHNO3, ICP-OES, CV	-AAS	

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

 METODE:
 Analyse av kvikksølv i oppsluttete geologiske materialer (LABdok_G10 under etablering) Prinsipp:
 Analysemetoden er basert på kalddamp teknikk (CV-AAS) med SnCl₂ som reduksjonsmiddel

 Analyseinstrument:
 Teledyne Leeman Labs QuickTrace® M-7600Mercury Analyzer

 Framstilling av analyseløsninger:
 iht. prosedyre i LABdok_P03: Framstilling av analyseløsninger etter partiell oppslutning i salpetersyre iht. NS-4770 Merknad:

 Prøvebehandling iht. NS-4770 er en selektiv oppslutningsmetode og medfører ikke total dekomponering. Rapporterte analyseverdier representerer derfor ikke totalt innhold i prøve.

 Nedre bestemmelsesgrense (LLQ):
 0.005 mg/kg

 "Basert på fortynningsfaktor 100, dvs. 1 (± 0.001) g prøve fortynnes i 100 ml analysevolum. For analyser med fortynningsfaktor som avviker fra 100, blir deteksjonsgrensene og måleområdene automatisk omregnet.

 Analyseusikkerhet:
 ± 40 % rel.
 måleområdet 0.025 - 0.025 mg/kg ± 20 % rel.
 måleområdet 0.025 - 2.00 mg/kg Oppgitt usikkerhet har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %

 Kontrollrutiner:
 Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

Analysekontrakt nr.: 2024.0024 Prøvematerial: GEOLOGISK MATERIALE Antall prøver: 61 Anmerkninger: Noen prøver ble fortynnet mer en vannlig på grunn av høyt konsentrasjoner.

Delrapport med forside ("Forside_Hg") og sider med analysedata ("Data_Hg"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres. Merk! Rapporten er skrivebeskyttet.

> Ferdig analysert (dato): 20.08.2024 Operatør: Arlinda F. Ciftja

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00

E-post: lab@ngu.no

Bestemmelse av kvikksølv, CV-AAS metode GEOLOGISK MATERIALE Analysekontraktnr. 2024.0024

NGU-nr.	Prøve ID	Hg
		mg/kg
	Hynne	0.0213
	Minn	< 0.005
	Tana	< 0.005
	Hynne 2023	0.0242
	N-std	0.0318
190118	R3188MC05_0-1 cm	0.0290
190303	R3190MC09A_0-1cm	0.0289
190169	R3196MC06_0-1 cm	0.0309
190223	R3200MC07A_0-1cm	0.0340
190225	R3200MC07A_2-3cm	0.0228
190227	R3200MC07A_4-5cm	0.0192
190232	R3200MC07A_9-10cm	0.0151
190237	R3200MC07A_14-15cm	0.0151
190247	R3200MC07A_24-25cm	0.0141
190269	R3200MC07A_46-47cm	0.0128
190274	R3224MC08A_0-1cm	0.0105
190348	R3303MC10A_0-1cm	0.0698
	Hynne	0.0216
	Minn	< 0.005
	Tana	< 0.005
	Hynne 2023	0.0237
	N-std	0.0318
190406	R3310MC11A_0-1cm	0.0533
190408	R3310MC11A_2-3cm	0.0732
190410	R3310MC11A_4-5cm	0.0788
190415	R3310MC11A_9-10cm	0.0938
190420	R3310MC11A_14-15cm	0.0948
190430	R3310MC11A_24-25cm	0.0326
190452	R3310MC11A_46-47cm	0.0176
190456	R3328MC12A_0-1cm	0.0756
190458	R3328MC12A_2-3cm	0.0748
190460	R3328MC12A_4-5cm	0.0748
190465	R3328MC12A_9-10cm	0.0870
190470	R3328MC12A_14-15cm	0.0938
190480	R3328MC12A_24-25cm	0.0796
190502	R3328MC12A_46-47cm	0.0280
	Hynne	0.0219

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00

E-post: lab@ngu.no

Bestemmelse av kvikksølv, CV-AAS metode GEOLOGISK MATERIALE Analysekontraktnr. 2024.0024

NGU-nr.	Prøve ID	Hg
		mg/kg
	Minn	< 0.005
	Tana	< 0.005
	Hynne 2023	0.0232
	N-std	0.0330
190508	R3333MC13A_0-1cm	0.0636
190558	R3345MC14A_0-1cm	0.0652
190560	R3345MC14A_2-3cm	0.0692
190562	R3345MC14A_4-5cm	0.0788
190567	R3345MC14A_9-10cm	0.0916
190572	R3345MC14A_14-15cm	0.0810
190582	R3345MC14A_24-25cm	0.0576
190600	R3345MC14A_42-43cm	0.0218
190613	R3365MC15A_0-1cm	0.0970
190615	R3365MC15A_2-3cm	0.0962
190617	R3365MC15A_4-5cm	0.0950
190622	R3365MC15A_9-10cm	0.0944
190627	R3365MC15A_14-15cm	0.0982
190637	R3365MC15A_24-25cm	0.109
190659	R3365MC15A_46-47cm	0.133
	Hynne	0.0220
	Minn	< 0.005
	Tana	< 0.005
	Hynne 2023	0.0232
	N-std	0.0327

UNDERSØKELSE

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

INSTRUMENT: ICP-OES Agilent 5110 VDV

METODE: LABdok_G09: Analyse av kationer i geologiske materialer basert på ICP-OES metode og oppslutning i autoklav etter NS-4770

Prøveframstilling følger prosedyre i LABdok_P03: Framstilling av analyseløsninger etter partiell oppslutning i salpetersyre iht. NS-4770. Merk! Dette er en partielloppslutningsmetode og rapporterte verdier representerer <u>ikke totalt innhold</u> i prøvene.

			0	1 1		0										
	AI	As	В	Ba	Be	Ca	Cd	Ce	Co	Cr	Cu	Fe	K	La	Li	Mg
LLQ prøve ¹⁾ (mg/kg)	20	2	10	1	0.1	200	0.1	3	1	1	1	3	100	0.5	0.5	50
Høyeste målegrense ¹¹ (mg/kg)	30000	1000	1000	2000	500	300000	200	1000	1000	1000	1000	50000	20000	1000	1000	70000
Måleområde '' 1 (mg/kg)	20-100	2-10	10-50	1-5	0.1-1	200-1000	0.1-1	3-30	1-5	1-5	1-5	3-30	100-500	0.5-5	0.5-2.5	50-500
Analyseusikkerhet ²⁾ 1 (rel.)	25 %	50 %	25 %	25 %	25 %	25 %	25 %	25 %	50 %	25 %	25 %	25 %	25 %	25 %	25 %	25 %
Måleområde ¹¹ 2 (mg/kg)	100-30000	10-1000	50-1000	5-2000	1-500	1000-300000	1-200	30-1000	5-1000	5-1000	5-1000	30-50000	500-20000	5-1000	2.5-1000	500-70000
Analyseusikkerhet ²⁾ 2 (rel.)	10 %	20 %	10 %	10 %	10 %	10 %	10 %	10 %	20 %	10 %	10 %	10 %	10 %	10 %	10 %	10 %
Omfattes av akkreditering ³⁾	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA	JA
	Mn	Мо	Na	Ni	Р	Pb	S	Sc	Se	Si	Sr	Ti	V	Y	Zn	Zr
LLQ prøve ¹⁾ (mg/kg)	0.5	1	200	1	10	2	10	0.1	10	200	1	1	1	0.1	4	2
Høyeste målegrense'' (mg/kg)	4000	1000	50000	1000	2000	1000	10000	1000	1000	5000	1000	4000	1000	1000	2000	1000
Måleområde ''1 (mg/kg)	0.5-2.5	1-5	200-1000	1-5	10-50	2-10	10-50	0.1-1	10-50	200-500	1-5	1-5	1-5	0.1-1	4-20	2-10
Analyseusikkerhet ²⁾ 1 (rel.)	25 %	50 %	25 %	25 %	50 %	25 %	50 %	25 %	50 %	25 %	25 %	50 %	50 %	25 %	37.5 %	25 %
Måleområde ¹¹ 2 (mg/kg)	2.5-4000	5-1000	1000-50000	5-1000	50-2000	10-1000	50-10000	1-1000	50-1000	500-5000	5-1000	5-4000	5-1000	1-1000	20-2000	10-1000
Analyseusikkerhet ²⁾ 2 (rel.)	10 %	20 %	10 %	10 %	20 %	10 %	10 %	10 %	20 %	10 %	10 %	20 %	20 %	10 %	15 %	10 %
Omfattes av akkreditering ³⁾	JA	JA	JA	JA	JA	JA	nei	JA	nei	nei	JA	JA	JA	JA	JA	JA

Nedre bestemmelsesgrenser (LLQ¹⁾), måleområder¹⁾ og analyseusikkerheter²⁾

¹⁾ Angitte LLQ-verdier og måleområder er for fortynningsgrad 100X. For analyser med andre fortynningsfaktorer blir deteksjonsgrensene automatisk omregnet.

²⁾ Oppgitte usikkerheter har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %

Presisjon: Kontrollprøver analyseres rutinemessig. For utfyllende informasjon om rutinene for kvalitetssikring kontaktes laboratoriet. Analysekontrakt nr.: 2024.0024 Prøvematerial: GEOLOGISK MATERIALE

Antall prøver: 61

Anmerkninger: Mn markert rødt er utenfor metodens måleområde som kan ha en større usikkerhet enn det som oppgis og omfattes ikke av akkreditering.

Delrapport med forside ("Forside_ICP-OES") og sider med analysedata ("Data_ICP-OES"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

Merk! Data i rapporten er skrivebeskyttet!

Oppslutning fullført dato: 24.07.2024 Analyser fullført dato: 31.07.2024 **Oppslutning fullført av:** Clea Fabian **Analysert og rapportert av:** Ruikai Xie

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIF.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no UNDERSØKELSE

Bestemmelse av kationer, ICP-OES metode (LABdok_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2024.0024

NGU-nr	Prøve ID	Al mg/kg	As mg/kg	B mg/kg	Ba mg/kg	Be mg/kg	Ca mg/kg	Cd mg/kg	Ce mg/kg	Co mg/kg	Cr mg/kg	Cu mg/kg	Fe mg/kg	K mg/kg	La mg/kg	Li mg/kg	Mg mg/kg
	Hynne	19600	4.1	30	71.4	0.51	18100	<0.1	53.9	10.9	56.3	18.2	28400	6680	23.4	26.3	13700
	Minn	17800	<2	<10	52.9	0.29	948	<0.1	31.4	10.2	23.0	11.1	32000	5850	15.4	16.6	6260
	Tana	15600	<2	<10	126	1.41	2690	<0.1	73.4	14.9	37.6	3.7	18000	4900	34.8	22.1	9470
	Hynne 2023	19800	4.6	31	72.1	0.52	17600	<0.1	55.3	11.2	57.6	18.4	28900	6820	23.8	26.8	13900
	N-std	16500	16.0	50	86.5	0.88	30300	0.10	44.3	8.7	31.8	17.1	28700	5980	18.9	30.4	11700
190118	R3188MC05_0-1 cm	16500	10.9	72	73.6	0.98	60700	<0.1	46.8	10.9	36.2	13.1	24900	6320	19.6	27.6	10700
190303	R3190MC09A_0-1cm	15100	13.4	67	74.8	0.90	45100	<0.1	42.5	10.3	33.2	11.5	23500	5660	17.9	25.2	9570
190169	R3196MC06_0-1 cm	15400	9.1	66	64.1	0.91	40500	<0.1	44.2	8.6	33.2	10.6	22700	5680	18.7	25.9	9730
190223	R3200MC07A_0-1cm	21600	9.9	88	75.4	1.26	47400	<0.1	54.2	11.2	46.2	15.4	30400	7810	22.8	36.8	12900
190225	R3200MC07A_2-3cm	22700	10.8	88	68.3	1.34	49100	<0.1	57.0	11.7	49.0	14.7	32100	8350	24.0	39.3	13000
190227	R3200MC07A_4-5cm	23500	11.7	88	66.2	1.37	48600	<0.1	58.0	12.0	50.5	14.7	33300	8640	24.4	40.7	13100
190232	R3200MC07A_9-10cm	24000	10.4	88	62.7	1.39	48600	<0.1	58.8	12.0	51.7	14.5	34200	9070	24.5	42.0	13400
190237	R3200MC07A_14-15cm	24200	9.6	86	62.0	1.39	47900	<0.1	58.5	11.6	51.2	14.2	33400	9000	24.3	41.5	13000
190247	R3200MC07A_24-25cm	24100	11.5	86	62.2	1.40	49100	<0.1	58.5	11.9	51.1	14.2	34000	8960	24.4	41.5	1310
190269	R3200MC07A_46-47cm	21000	7.8	77	52.7	1.22	50400	<0.1	56.3	10.5	44.7	12.1	30100	8000	23.6	36.4	11900
190274	R3224MC08A_0-1cm	3920	3.1	27	49.7	0.26	19500	<0.1	16.8	1.9	12.3	2.8	6640	1730	7.48	6.28	3250
190348	R3303MC10A_0-1cm	21500	51.7	102	201	1.25	37800	<0.1	44.7	16.6	49.1	19.1	42300	8180	20.2	38.4	15500
	Hynne	19300	4.0	30	69.9	0.49	17500	<0.1	52.3	10.6	55.5	17.6	28100	6560	22.9	25.9	13500
	Minn	17400	<2	<10	52.8	0.28	958	<0.1	28.5	10.1	22.6	10.5	31300	5800	15.5	16.2	6140
	Tana	15900	<2	<10	128	1.43	2680	<0.1	74.1	14.7	38.0	3.6	18400	5090	35.3	22.0	9490
	Hynne 2023	19800	4.4	31	72.0	0.50	17100	<0.1	56.7	10.9	56.8	17.9	28700	6790	25.0	26.0	1370
	N-std	16400	16.1	49	86.9	0.88	30200	0.11	44.6	8.6	31.6	16.9	28400	5930	19.3	29.9	11600
190406	R3310MC11A_0-1cm	23800	44.6	102	153	1.38	38100	<0.1	50.1	15.9	52.8	18.2	43800	8480	21.6	43.5	15800
190408	R3310MC11A_2-3cm	24000	53.1	101	195	1.39	34100	<0.1	49.7	17.0	53.5	20.0	44900	8410	22.0	42.3	15400
190410	R3310MC11A_4-5cm	24300	53.5	108	213	1.41	38300	<0.1	51.2	17.6	54.7	20.6	45900	8360	22.5	42.3	15200
190415	R3310MC11A_9-10cm	25200	48.2	107	145	1.47	41700	0.11	54.7	16.5	56.4	21.3	45400	9110	23.4	44.9	15200
190420	R3310MC11A_14-15cm	25300	27.3	103	103	1.50	38500	0.12	54.9	15.4	56.6	21.0	44100	9230	23.5	45.7	15200
190430	R3310MC11A_24-25cm	25600	11.2	97	74.6	1.49	42700	0.13	55.1	13.7	57.1	16.6	41800	9560	23.4	46.9	15200
190452	R3310MC11A_46-47cm	25600	12.7	96	62.6	1.50	40100	0.12	55.2	13.2	56.5	14.7	43400	9670	23.4	47.4	15400
190456	R3328MC12A_0-1cm	22800	30.1	103	219	1.33	45700	<0.1	49.6	12.0	53.7	18.4	37500	8090	21.5	39.6	15400
190458	R3328MC12A_2-3cm	24200	32.3	101	236	1.38	46800	<0.1	51.5	12.8	56.0	19.3	39200	8030	22.6	41.0	14800
190460	R3328MC12A_4-5cm	24000	36.0	106	250	1.39	49200	<0.1	52.3	13.2	56.5	19.3	40200	8080	22.6	41.3	14600
190465	R3328MC12A_9-10cm	25200	14.7	101	248	1.45	48800	0.11	54.2	11.6	58.9	20.2	35800	8840	23.4	43.8	14800
190470	R3328MC12A_14-15cm	25300	10.5	99	211	1.45	47800	<0.1	54.0	11.7	59.1	20.4	35700	8990	23.5	44.4	14900
190480	R3328MC12A_24-25cm	25100	11.3	95	92.9	1.45	45700	0.11	53.6	11.6	56.9	19.1	34900	8910	22.9	43.8	14400
190502	R3328MC12A_46-47cm	24700	12.2	95	65.3	1.41	50400	<0.1	51.6	10.1	56.7	14.6	34900	8870	22.1	43.4	14700

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIF.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no UNDERSØKELSE

Bestemmelse av kationer, ICP-OES metode (LABdok_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2024.0024

NGU-nr	Prøve ID	Mn mg/kg	Mo mg/kg	Na mg/kg	Ni mg/kg	P mg/kg	Pb mg/kg	S mg/kg	Sc mg/kg	Se mg/kg	Si mg/kg	Sr mg/kg	Ti mg/kg	V mg/kg	Y mg/kg	Zn mg/kg	Zr mg/kg
	Hynne	407	<1	6260	37.8	584	11.7	599	5.31	<10	224	67.0	1250	57.1	12.9	75.3	20.6
	Minn	240	1.4	<200	19.2	388	12.1	95	3.01	<10	483	4.6	2190	33.6	9.59	62.0	9.3
	Tana	358	<1	324	51.1	605	20.8	27	5.47	<10	580	31.5	407	17.9	22.7	70.6	17.8
	Hynne 2023	405	<1	6380	38.1	596	12.4	617	5.47	<10	215	67.2	1280	58.7	13.2	77.5	21.0
	N-std	391	1.2	8830	26.3	705	18.6	1460	5.08	<10	346	90.0	383	67.6	11.0	70.3	6.3
190118	R3188MC05_0-1 cm	944	<1	23100	25.7	556	34.3	2120	5.03	<10	259	214	338	58.3	12.2	69.4	10.4
190303	R3190MC09A_0-1cm	1350	<1	20200	23.5	552	34.4	1870	4.52	<10	285	169	290	57.8	11.0	64.7	9.4
190169	R3196MC06_0-1 cm	512	<1	20400	22.7	539	31.0	1830	4.55	<10	309	147	302	54.6	11.5	62.5	9.9
190223	R3200MC07A_0-1cm	431	<1	24800	31.7	576	43.0	2440	6.32	<10	210	182	356	75.2	14.0	84.9	13.0
190225	R3200MC07A_2-3cm	394	<1	19900	33.8	572	34.3	2590	6.70	<10	245	182	363	79.9	14.7	80.8	14.1
190227	R3200MC07A_4-5cm	384	<1	19700	35.2	578	32.0	2860	6.89	<10	<200	180	362	82.2	14.9	80.7	14.6
190232	R3200MC07A_9-10cm	368	<1	19500	36.6	556	28.6	3280	7.06	<10	<200	182	362	86.0	15.1	79.1	14.8
190237	R3200MC07A_14-15cm	390	<1	17500	35.6	554	27.9	3070	6.98	<10	<200	178	363	84.7	14.9	77.8	14.9
190247	R3200MC07A_24-25cm	461	<1	16800	35.6	566	26.7	3190	7.00	<10	<200	184	366	84.2	15.0	77.8	15.1
190269	R3200MC07A_46-47cm	374	<1	14900	30.8	537	19.5	2820	6.22	<10	239	177	361	69.9	14.3	67.8	13.8
190274	R3224MC08A_0-1cm	107	<1	6630	6.7	277	7.8	772	1.26	<10	631	66.5	124	14.1	4.27	16.7	3.3
190348	R3303MC10A_0-1cm	17800	12.4	38700	38.2	1090	55.1	3760	6.34	11	325	237	282	164	14.2	109	11.2
	Hynne	402	<1	6280	36.7	585	11.9	599	5.24	<10	238	64.2	1240	56.8	12.8	73.2	20.8
	Minn	234	1.3	<200	18.7	393	11.5	95	2.96	<10	435	4.5	2160	32.8	9.64	60.0	9.4
	Tana	360	<1	331	50.7	607	21.2	27	5.55	<10	533	31.4	435	18.1	22.9	70.4	18.5
	Hynne 2023	402	<1	6390	37.5	619	12.1	614	5.40	<10	204	64.6	1290	58.0	13.1	73.0	21.2
	N-std	392	1.0	8750	26.0	705	18.1	1450	5.04	<10	383	88.5	385	67.5	10.9	69.4	6.4
190406	R3310MC11A_0-1cm	9810	11.2	32700	39.2	920	53.8	3130	6.91	<10	296	196	284	157	14.9	110	13.2
190408	R3310MC11A_2-3cm	16600	13.3	30300	40.1	1030	62.3	2940	6.96	<10	322	206	290	167	15.2	119	13.1
190410	R3310MC11A_4-5cm	11900	3.8	26900	40.4	1040	65.3	2720	7.09	<10	273	222	289	167	15.6	124	14.0
190415	R3310MC11A_9-10cm	4070	<1	22700	41.6	959	72.0	2330	7.38	<10	238	168	293	170	16.0	136	15.4
190420	R3310MC11A_14-15cm	2310	<1	21800	41.8	797	74.7	2320	7.43	<10	216	151	294	165	16.0	140	15.6
190430	R3310MC11A_24-25cm	1570	<1	19300	40.0	643	42.3	2410	7.47	<10	229	160	292	149	15.6	94.2	15.6
190452	R3310MC11A_46-47cm	1910	<1	18000	39.9	617	24.9	2590	7.50	<10	225	146	288	144	15.5	82.8	15.9
190456	R3328MC12A_0-1cm	3240	2.8	32100	36.1	866	52.9	3270	6.69	<10	308	201	302	118	14.3	105	12.5
190458	R3328MC12A_2-3cm	3330	1.5	24400	37.2	924	55.0	2740	6.97	<10	230	207	314	126	14.8	108	13.8
190460	R3328MC12A_4-5cm	2500	<1	21700	37.6	963	54.2	2560	7.01	<10	239	216	315	128	15.0	108	14.2
190465	R3328MC12A_9-10cm	558	<1	20500	38.1	705	61.5	2390	7.27	<10	205	189	316	129	15.2	118	15.2
190470	R3328MC12A_14-15cm	484	<1	20200	38.6	671	66.8	2430	7.28	<10	213	183	314	129	15.2	123	15.2
190480	R3328MC12A_24-25cm	442	<1	18100	37.1	624	59.6	2640	7.17	<10	<200	166	300	115	14.6	116	15.0
190502	R3328MC12A_46-47cm	452	<1	18500	36.2	614	34.8	4260	7.04	<10	207	186	300	104	14.2	83.0	14.7

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no

Bestemmelse av kationer, ICP-OES metode (LABdok_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2024.0024

NGU-nr	Prøve ID	Al ma/kal	As ma/kal	B ma/kal	Ba mɑ/kɑl	Be ma/kal	Ca mɑ/kɑl	Cd ma/ka	Ce ma/ka	Co ma/kal	Cr ma/kal	Cu ma/kal	Fe ma/kal	K ma/kal	La mg/kg	Li ma/kal	Mg ma/ka
	Hynne	20400	4.0	30	72.8	0.51	20200	<0.1	55.6	11.6	58.2	18.4	29400	6840	24.1	26.5	14200
	Minn	17800	<2	<10	53.0	0.28	1010	<0.1	27.2	10.0	22.8	10.5	31600	5800	15.3	16.0	6190
	Tana	16100	<2	<10	131	1.44	2720	<0.1	75.9	14.9	38.6	3.8	18600	5110	36.3	21.8	9620
	Hynne 2023	19600	4.3	29	70.7	0.50	18800	<0.1	54.6	10.8	56.3	17.6	28300	6620	23.7	25.5	13700
	N-std	17000	16.1	49	87.9	0.90	30300	<0.1	45.6	8.8	32.7	17.1	29100	6090	19.7	30.6	11800
190508	R3333MC13A_0-1cm	22400	48.2	100	192	1.28	35900	0.14	45.8	16.5	50.0	18.9	43200	8260	20.6	40.5	15800
190558	R3345MC14A_0-1cm	23500	42.7	102	192	1.35	42000	<0.1	49.2	14.9	53.3	19.9	42900	8280	21.3	41.0	15500
190560	R3345MC14A_2-3cm	24300	44.2	102	204	1.39	42800	<0.1	51.1	15.2	54.7	19.3	44000	8280	22.2	41.7	15200
190562	R3345MC14A_4-5cm	24800	43.3	103	186	1.43	45100	<0.1	52.6	13.4	56.3	19.8	44400	8610	22.7	42.8	15000
190567	R3345MC14A_9-10cm	26200	14.2	101	122	1.53	44300	0.15	55.9	13.5	59.5	21.3	39500	9440	24.1	46.6	15200
190572	R3345MC14A_14-15cm	26200	11.1	100	92.4	1.51	42600	0.14	55.2	13.7	58.9	20.4	39600	9550	23.8	46.7	15200
190582	R3345MC14A_24-25cm	25900	12.4	98	79.0	1.48	39900	<0.1	54.2	13.6	57.5	18.2	42600	9460	23.3	46.2	15100
190600	R3345MC14A_42-43cm	25600	16.7	94	71.7	1.46	44100	0.13	52.8	12.5	57.0	14.8	39800	9300	22.5	45.7	15100
190613	R3365MC15A_0-1cm	23700	15.7	87	118	1.35	45400	<0.1	51.3	9.7	51.6	17.1	32500	8020	22.0	39.3	14400
190615	R3365MC15A_2-3cm	24200	18.6	86	122	1.39	46800	<0.1	52.8	10.0	52.7	17.7	33900	8080	22.7	40.1	14400
190617	R3365MC15A_4-5cm	24200	18.6	85	121	1.38	46900	<0.1	53.4	10.1	52.6	17.4	34100	8100	22.8	40.0	14300
190622	R3365MC15A_9-10cm	24700	18.8	84	121	1.40	46200	<0.1	53.9	9.7	53.4	17.9	35000	8290	22.9	40.5	14100
190627	R3365MC15A_14-15cm	24600	13.4	85	120	1.41	47200	<0.1	55.1	9.8	53.8	17.7	33300	8700	23.3	41.2	14100
190637	R3365MC15A_24-25cm	25300	10.6	84	122	1.46	47500	<0.1	55.6	10.1	55.4	18.5	33700	8830	23.8	42.5	14100
190659	R3365MC15A_46-47cm	25200	13.8	80	115	1.45	48500	<0.1	54.5	10.3	55.9	18.7	34700	8510	23.2	42.3	13600
	Hynne	20700	4.7	30	76.9	0.52	18300	<0.1	56.9	11.4	60.3	18.5	29900	7170	24.6	27.0	14400
	Minn	17300	<2	<10	52.0	0.29	932	<0.1	31.4	9.7	22.4	10.4	31200	5650	16.7	15.6	6040
	Tana	16100	<2	<10	130	1.44	2710	<0.1	75.5	14.9	38.5	3.8	18600	5070	36.1	21.9	9590
	Hynne 2023	20000	4.3	29	73.8	0.51	19800	<0.1	56.2	10.9	57.1	17.7	28900	6810	24.4	25.8	13800
	N-std	17300	16.6	49	90.1	0.91	30300	<0.1	45.6	8.8	32.8	17.2	28800	6140	19.9	30.0	11800

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no UNDERSØKELSE

Bestemmelse av kationer, ICP-OES metode (LABdok_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2024.0024

INGU-nr	IPrøve ID	Mn I ma/kal	Mo ma/kal	Na mg/kg	Ni ma/kal	P ma/kal	Pb ma/kal	S ma/kal	Sc ma/ka	Se ma/kal	Si ma/kal	Sr ma/kal	Ti ma/kal	V ma/kal	Y ma/kal	Zn ma/kal	Zr ma/ka
	Hyppe	451	-1 <1	6390	38.7	605	12 1	638	5 53	<10	<200	82.9	1310	58.8	13.4	73.8	21.8
	Minn	234	1.3	<200	18.8	421	11.3	94	2 99	<10	315	4 5	2180	33.2	9.82	60.1	9.5
	Tana	361	<1	343	51.2	617	21.3	26	5.66	<10	466	31.8	438	18.5	23.6	71.0	19.5
	Hynne 2023	407	<1	6130	37.0	609	11.6	610	5.30	<10	<200	68.1	1260	56.7	13.0	71.0	20.7
	N-std	400	11	8900	26.6	722	18.3	1480	5 19	<10	261	90.5	396	68.8	11.1	71.0	6.8
190508	R3333MC13A 0-1cm	16500	21.7	37900	38.3	1020	52.5	3650	6.48	<10	228	225	285	168	14.4	106	11.8
190558	 R3345MC14A_0-1cm	7690	6.3	31400	37.4	1020	56.6	3370	6.83	<10	240	211	292	147	14.7	109	12.9
190560	 R3345MC14A 2-3cm	6890	2.9	28200	37.8	1030	57.7	3030	7.01	<10	242	214	298	150	15.0	112	13.5
190562	R3345MC14A 4-5cm	2080	<1	26000	38.3	982	64.2	2670	7.15	<10	232	196	297	154	15.4	121	14.6
190567	R3345MC14A_9-10cm	727	<1	21400	40.4	683	72.5	2290	7.57	<10	204	169	310	155	15.8	136	15.8
190572	R3345MC14A_14-15cm	805	<1	20600	40.4	644	68.6	2330	7.57	<10	201	159	311	148	15.6	132	15.9
190582	R3345MC14A_24-25cm	1550	<1	19400	39.3	651	59.6	2710	7.47	<10	<200	148	301	140	15.3	117	15.9
190600	R3345MC14A_42-43cm	930	1.1	18600	38.7	596	30.2	3620	7.32	<10	<200	162	298	130	14.7	82.2	15.7
190613	R3365MC15A_0-1cm	504	<1	28600	31.5	684	42.4	2930	6.85	<10	210	158	303	90.0	14.2	100	15.1
190615	R3365MC15A_2-3cm	566	<1	25700	32.4	738	42.1	2730	7.05	<10	243	163	311	92.8	14.6	101	15.6
190617	R3365MC15A_4-5cm	506	<1	24700	32.1	739	42.1	2700	7.04	<10	231	161	312	92.1	14.6	101	15.8
190622	R3365MC15A_9-10cm	359	<1	21800	32.7	765	43.4	2420	7.12	<10	236	155	313	94.3	14.8	102	16.2
190627	R3365MC15A_14-15cm	317	<1	21700	32.8	676	42.9	2460	7.19	<10	232	156	318	95.0	15.0	104	16.6
190637	R3365MC15A_24-25cm	327	<1	19900	33.8	643	48.2	2550	7.34	<10	233	156	320	97.0	15.2	111	16.8
190659	R3365MC15A_46-47cm	348	<1	16300	34.0	645	51.0	3740	7.31	<10	226	153	306	94.8	15.0	116	16.8
	Hynne	421	<1	6440	39.4	613	12.2	610	5.68	<10	219	67.3	1360	60.9	13.8	75.8	22.4
	Minn	230	1.4	202	18.3	387	11.3	94	2.94	<10	347	4.3	2120	32.9	9.76	58.3	9.7
	Tana	363	<1	331	51.4	617	21.2	27	5.64	<10	340	31.7	446	18.5	23.5	71.0	19.4
	Hynne 2023	404	<1	6390	37.4	614	11.7	611	5.49	<10	<200	75.2	1320	58.3	13.2	72.7	21.6
	N-std	403	1.1	8860	26.4	731	18.7	1500	5.14	<10	200	87.2	406	69.2	11.2	70.6	7.0

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

INSTRUMENT: Forbrenningsovn Leco SC-632

METODER: Bestemmelse av totalt karbon (TC) (LABdok_G03) Bestemmelse av totalt organisk karbon (TOC) (LABdok_G04) Bestemmelse av totalt svovel (TS) (LABdok_G05)

I) TOTALT KARBON (TC)

- NGU

Nedre bestemmelsesgrense [vekt% TC]: 0.06

Analyseusikkerl	het
Måleområde	Usikkerhet
0.06 - 0.4 vekt%	± 0.06 vekt%
0.4 - 60 vekt%	± 15 % rel.
60 - 100 vekt%*	± 15 % rel.*

II) TOTALT SVOVEL (TS)

Analyseusikkerhet											
Måleområde	Usikkerhet										
0.02 - 2.0 vekt%	± 30 % rel.										
2.0 - 52 vekt%	± 20 % rel.										

III) TOTALT ORGANISK KARBON (TOC)**

Nedre bestemmelsesgrense [vekt% TOC]: 0.1

Analyseusikkerhet

Måleområde	Usikkerhet
0.1 - 3.0 vekt%	± 25 % rel.
3.0 - 60 vekt%	± 20 % rel.
60 - 100 vekt%*	± 20 % rel.*

*Metoden som benyttes for konsentrasjonsområdet 60 - 100 vekt% karbon omfattes ikke av akkrediteringen. For andre unntak se Anmerkninger

**Enkelte organiske komponenter i jord kan gå tapt under preparering til TOC, noe som vil medføre lavere TOC-verdier. En differanse mellom TC- og TOCverdier i jordprøver vil derfor ikke nødvendigvis indikere karbonat.

Oppgitte usikkerheter har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %.

PRESISJON: Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig. **Analysekontrakt nr.:** 2024.0024 Prøvematerial: GEOLOGISK MATERIALE

Antall prøver: 61

Anmerkninger: ingen

Delrapport med forside ("Forside_TC-TS-TOC") og sider med analysedata ("TC-TS-TOC"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres. Merk! Data i rapporten er skrivebeskyttet

Analyser fullført dato: 19.08.2024

Operatør: Clea Fabian, Raghubansh Strøm Singh

- NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

Tlf.: 73 90 40 00 E-post: lab@ngu.no

Totalt karbon / Totalt svovel / Totalt organisk karbon GEOLOGISK MATERIALE Analysekontrakt nr. 2024.0024

		TS	тс	TOC
NGU-nr	Prøve ID	[vekt%]	[vekt%]	[vekt%]
	Hynne	0.0580	0.928	0.431
	Minn	< 0.02	0.721	0.442
	Tana	< 0.02	< 0.06	< 0.1
	Hynne 2023	0.0598	0.927	0.410
	N-std	0.155	2.28	1.09
190118	R3188MC05_0-1 cm	0.204	3.12	1.22
190303	R3190MC09A_0-1cm	0.191	2.69	1.14
190169	R3196MC06_0-1 cm	0.165	2.37	1.04
190223	R3200MC07A_0-1cm	0.240	3.07	1.50
190225	R3200MC07A_2-3cm	0.279	3.05	1.43
190227	R3200MC07A_4-5cm	0.303	2.98	1.45
190232	R3200MC07A_9-10cm	0.319	3.07	1.45
190237	R3200MC07A_14-15cm	0.300	3.07	1.41
190247	R3200MC07A_24-25cm	0.319	2.98	1.41
190269	R3200MC07A_46-47cm	0.267	2.66	1.07
190274	R3224MC08A_0-1cm	0.0745	1.21	0.505
190348	R3303MC10A_0-1cm	0.399	3.63	2.27
	Hynne	0.0553	1.02	0.410
	Minn	< 0.02	0.732	0.450
	Tana	< 0.02	< 0.06	< 0.1
	Hynne 2023	0.0579	0.901	0.435
	N-std	0.145	2.24	1.08
190406	R3310MC11A_0-1cm	0.319	3.33	2.06
190408	R3310MC11A_2-3cm	0.286	3.45	1.93
190410	R3310MC11A_4-5cm	0.274	3.61	1.79
190415	R3310MC11A_9-10cm	0.219	3.58	2.12
190420	R3310MC11A_14-15cm	0.229	3.47	2.07
190430	R3310MC11A_24-25cm	0.222	3.25	1.79
190452	R3310MC11A_46-47cm	0.240	2.94	1.57
190456	R3328MC12A_0-1cm	0.310	3.91	2.40
190458	R3328MC12A_2-3cm	0.243	4.02	2.52
190460	R3328MC12A_4-5cm	0.252	4.16	2.57
190465	R3328MC12A_9-10cm	0.218	4.02	2.46
190470	R3328MC12A_14-15cm	0.231	4.02	2.43
190480	R3328MC12A_24-25cm	0.259	3.84	2.33
190502	R3328MC12A_46-47cm	0.405	3.82	2.09

- NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

Tlf.: 73 90 40 00 E-post: lab@ngu.no

Totalt karbon / Totalt svovel / Totalt organisk karbon GEOLOGISK MATERIALE Analysekontrakt nr. 2024.0024

		TS	тс	тос
NGU-nr	Prøve ID	[vekt%]	[vekt%]	[vekt%]
	Hynne	0.0563	0.917	0.438
	Minn	< 0.02	0.715	0.442
	Tana	< 0.02	< 0.06	< 0.1
	Hynne 2023	0.0535	0.904	0.396
	N-std	0.136	2.24	1.06
190508	R3333MC13A_0-1cm	0.331	3.51	2.09
190558	R3345MC14A_0-1cm	0.288	3.80	2.20
190560	R3345MC14A_2-3cm	0.315	3.68	2.21
190562	R3345MC14A_4-5cm	0.328	3.75	2.20
190567	R3345MC14A_9-10cm	0.214	3.82	2.23
190572	R3345MC14A_14-15cm	0.213	3.81	2.20
190582	R3345MC14A_24-25cm	0.258	3.40	2.04
190600	R3345MC14A_42-43cm	0.319	3.56	1.89
190613	R3365MC15A_0-1cm	0.268	3.65	2.00
190615	R3365MC15A_2-3cm	0.246	3.59	2.06
190617	R3365MC15A_4-5cm	0.241	3.74	2.05
190622	R3365MC15A_9-10cm	0.210	3.70	2.04
190627	R3365MC15A_14-15cm	0.214	3.69	1.99
190637	R3365MC15A_24-25cm	0.230	3.73	2.00
190659	R3365MC15A_46-47cm	0.359	3.66	2.05
	Hynne	0.0485	0.979	0.420
	Minn	< 0.02	0.731	0.456
	Tana	< 0.02	< 0.06	< 0.1
	Hynne 2023	0.0619	1.18	0.455
	N-std	0.127	2.21	1.07
1				

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

INSTRUMENT: Coulter LS 13320

METODE: LABdok_K01: Kornfordelingsanalyse: metode basert på laser partikkelteller, måleområdet 0.400 μm - 2000 μm.

Kornfordelingsbestemmelse basert på laserdiffraksjon. Laserlys brytes i ulike vinkler avhengig av størrelsen på partiklene, og registreres så av en rekke detektorer. De registrerte vinklene tilsvarer gitte partikkelstørrelser, og antall partikler er relatert til den intensiteten som den korresponderende detektoren registrerer. Kornfordelingen bestemmes således på volum-basis, med antagelse om ens tetthet på materialet vil kumulativ volum% være identisk med kumulativ masse%. Beregning på volum/masse-basis er basert på antagelse om sfæriske partikler.

MÅLEOMRÅDE: Måleområdet varierer avhengig av type detektorer som benyttes under målinger. Målingene i denne rapporten er for området 0.4 μm - 2000 μm Til vanlig gjøres målingene i området 0.4 μm - 2000 μm som omfattes av akkreditering.

> Utvidet måleområde til 0.017 µm – 2000 µm er mulig ved hjelp av den såkalte PIDS-detektoren. Dette området omfattes ikke av akkreditering. NB! Metoden normaliserer alle data i måleområdet til sum 100 % (kumulativ %), hvor den laveste målegrensen settes som nullpunkt mht. kumulativ %. Hvis prøvene inneholder materiale finere enn det laveste målegrense, er disse ikke detekterbare og dermed ikke tatt i beregning av kumulativ %.

ANALYSEUSIKKERHET: ± 10 % [kumulativ masse(volum) %] Usikkerheten er oppgitt med dekningsfaktor 2, tilsvarende et konfidensintervall på 95 % Bestemmelse av usikkerhet er basert på sammenligning av oppnådde resultater med sertifikatverdier for kvartsstandard BCR-131, samt presisjonsdata. MERK! Metoden tar utgangspunkt i antagelse om sfæriske partikler. For prøver som avviker fra dette kan usikkerheten være større.

PRESISJON: Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

Analysekontrakt nr.: 2024.0024 Prøvetype/prøvematrise: GEOLOGISK MATERIALE/sediment

Antall prøver: 61 inkl. hus-standarder, 20 målinger til sammen

Prøveforbehandling: Ingen (frysetørket på forhånd)

Anmerkninger: Analysene er utført ved eksternt laboratoriet v/UiT og rapportert ved NGU. Av denne grunnen omfattes ikke rapporten av akkreditering. Kvalitetskontrollen har fulgt NGUs rutiner for kvalitetssikring i LABdok_K0 og ble validert ved NGU (se intern rapport v/avvik 1198). For informasjon om utstyr til prøvedesintegrering og analyse se arket "Prove_info". Data for nve hus-standarder under innfasing/testing. Hvnne-2023 og N-std. følger med.

> Delrapport som består av forside med informasjon om metode ("Forside_Coulter"), sider med analysedata ("Data") og tilleggsinformasjon ("Prove_info"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

For informasjon om metode for databeregning (Optical Mode) og statistiske parametre henvises til arket Prove_info. Merk! Data i rapporten er skrivebeskyttet.

Analysert utført av: Ekstern lab UiT Analysert fullført (dato): 11.07.2024 Rapportert av: Ana Banica

Forbehandling fullført (dato): i/a Forbehandlet av: i/a

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no NGU -

							Coul	ter data (Ki	umulativ vol	um % <)						
Løpenr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
NGU prøvenr.						190118	190303	190169	190223	190225	190227	190232	190237	190247	190269	190274
Prøve nr. →			T	11	N. et al	R3188MC05_	R3190MC09A_	R3196MC06_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A	R3200MC07A	R3200MC07A_	R3224MC08A
Diameter(µm) ↓	Hynne	winn	Tana	Hynne 2023	N-Sta	0-1 cm	0-1cm	0-1 cm	0-1cm	2-3cm	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	0-1cm
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0.024	0.17	0	0	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0.066	0.47	0	0	0	0	0	0	0	0	0	0	0	0	0
0.496	0	0.13	0.92	0	0	0	0	0	0	0	0	0	0	0	0	0
0.545	0	0.22	1.54	0	0	0	0	0	0	0	0	0	0	0	0	0
0.596	0	0.33	2.32	0 00017	0	0	0	0	0	0	0	0	0	0	0	0
0.030	0	0.40	4.2	0.00017	0	0	0	0	0	0	0	0	0	0	0	0
0.791	0.001	0.78	5.29	0.026	0.0013	Ő	0.00017	0.00079	0.00067	0.00053	0	0.00049	Ő	0.0014	0.00036	0
0.868	0.014	0.97	6.45	0.1	0.018	0.0021	0.0053	0.013	0.011	0.011	0.0011	0.011	0.00065	0.019	0.0091	0.0002
0.953	0.086	1.17	7.65	0.27	0.11	0.029	0.045	0.084	0.074	0.077	0.02	0.079	0.013	0.12	0.073	0.0036
1.047	0.28	1.38	8.86	0.56	0.35	0.17	0.2	0.3	0.26	0.3	0.13	0.31	0.096	0.39	0.31	0.025
1.149	0.67	1.6	10.1	1	0.81	0.55	0.56	0.75	0.67	0.79	0.48	0.84	0.37	0.93	0.85	0.089
1.261	1.27	1.83	11.3	1.59	1.51	1.26	1.2	1.48	1.32	1.62	1.21	1.75	0.97	1.75	1.79	0.22
1.385	2.09	2.07	12.5	2.35	2.48	2.32	2.14	2.51	2.24	2.83	2.39	3.06	1.96	2.89	3.17	0.44
1.52	3.13	2.33	13.7	3.27	3.71	3.73	3.37	3.84	3.44	4.39	4.04	4.79	3.35	4.34	4.98	0.74
1.000	4.37	2.59	14.9	4.34	5.19	5.47 7.40	4.07	5.44 7.26	4.07	0.27	0.13	0.09	5.14 7.3	0.00	7.19	1.13
2 011	7 32	2.07	17.2	6.77	8.73	0.75	8.43	9.26	83	10.8	11.5	9.33 12	9.78	10.1	12.6	2 15
2 207	8.95	3.47	18.4	8.07	10.7	12.2	10.43	11 4	10.2	13.3	14.6	15	12.5	12.3	15.6	2.15
2.423	10.6	3.8	19.6	9.42	12.8	14.7	12.4	13.6	12.1	15.9	18	18	15.5	14.6	18.8	3.43
2.66	12.4	4.15	20.8	10.8	14.9	17.4	14.4	15.8	14.1	18.5	21.6	21.2	18.7	16.9	22	4.15
2.92	14.2	4.54	22.1	12.2	17.2	20.1	16.5	18.1	16.1	21.2	25.3	24.4	22	19.3	25.4	4.93
3.205	16	4.96	23.4	13.7	19.5	23	18.6	20.4	18.2	23.9	29.3	27.8	25.6	21.7	28.8	5.78
3.519	18	5.42	24.8	15.2	21.9	25.9	20.8	22.9	20.3	26.7	33.4	31.3	29.4	24.1	32.4	6.69
3.863	20	5.92	26.2	16.8	24.5	28.9	23.1	25.4	22.5	29.6	37.7	34.8	33.3	26.6	36	7.67
4.24	22	6.47	27.7	18.5	27.1	32	25.4	27.9	24.7	32.5	42.1	38.5	37.4	29.1	39.6	8.73
4.655	24.2	7.08	29.2	20.2	29.9	35.2	27.7	30.5	27	35.5	46.6	42.2	41.6	31.7	43.3	9.85
5.11	20.4	1.15	30.7	22	32.7	38.4	30	33.1	29.2	38.5	51.2	45.9	45.9	34.Z	46.9	11
6 158	20.7	0.47	32.3	25.9	38.6	41.5	32.3	38.2	33.7	41.4	55.7 60.2	49.0	54.5	30.0	54	12.5
6.76	33.3	10.1	35.5	27.9	41.6	47.7	36.8	40.7	35.9	47.1	64.6	56.8	58.8	41.7	57.4	15
7.421	35.7	11.1	37.1	30	44.6	50.7	38.9	43	38	49.7	68.9	60.3	62.9	44	60.6	16.5
8.147	38.1	12.1	38.6	32.1	47.6	53.5	40.9	45.3	40	52.2	72.9	63.7	66.9	46.2	63.6	18
8.943	40.4	13.2	40.2	34.3	50.6	56.1	42.8	47.4	41.9	54.6	76.7	66.8	70.6	48.3	66.3	19.6
9.817	42.7	14.3	41.8	36.4	53.6	58.6	44.5	49.4	43.7	56.7	80.2	69.9	74.1	50.3	68.8	21.2
10.78	45	15.6	43.4	38.6	56.4	60.8	46.1	51.1	45.5	58.7	83.4	72.7	77.2	52.1	71.1	22.8
11.83	47.2	16.9	45	40.8	59.1	62.8	47.5	52.7	47.1	60.5	86.1	75.2	80	53.8	73	24.5
12.99	49.3	18.3	46.6	42.9	61.7	64.6	48.8	54.1	48.6	62	88.4	77.6	82.3	55.3	74.7	26.1
14.20	53.3	19.9	40.3	44.9	66.3	67.5	50	50.4 56 5	50	64.6	90.2	79.7 81.6	04.Z 85.7	58	70.2	21.1
17.18	55.2	23.2	49.9 51.6	40.9	68.5	68.8	51.9	57.5	52.6	65.8	92.8	83.3	86.9	59.2	78.6	30.6
18.86	56.9	25	53.3	50.6	70.4	69.9	52.8	58.4	53.9	66.8	93.7	84.8	87.8	60.4	79.7	31.9
20.7	58.7	27	55	52.3	72.3	71	53.6	59.3	55.1	67.8	94.5	86.2	88.6	61.6	80.7	33.1
22.73	60.4	29.2	56.7	54	74.1	72.1	54.4	60.2	56.4	68.8	95.2	87.6	89.4	62.7	81.7	34.2
24.95	62	31.5	58.4	55.7	75.8	73.2	55.1	61.1	57.7	69.9	95.8	88.8	90.1	63.9	82.7	35.2
27.39	63.7	34	60.2	57.3	77.4	74.2	55.9	62	59.1	70.9	96.4	89.9	90.9	65.1	83.6	36.2
30.07	65.3	36.7	62	59	79	75.3	56.7	62.9	60.6	72	97	90.9	91.6	66.4	84.6	37
33.01	66.8	39.6	63.8	60.6	80.4	76.4	57.5	63.8	62.3	73.1	97.4	91.9	92.3	67.7	85.5	37.8
36.24	68.3	42.7	65.6	62.1	81.7	77.5	58.3	64.7	64.1	74.3	97.8	92.7	92.9	69	86.5	38.5
39.78	09.7	46	07.5	03.0 65	82.8	78.6	59.1	05.6	00.1	15.4	98.1	93.5	93.5	70.4	87.3	39.2
43.07	72 /	49.4	09.3 71.1	60 66 4	03.0 84.6	19.1	59.9 60.8	00.4 67.3	00.2 70.4	/0.0 77.0	90.3	94.Z 04.0	93.9	/ 1.0 73 3	00.∠ 80	40
52.62	73.8	56.7	72.9	67.8	85.4	82	61.8	68.2	72.8	79.2	98.7	95.5	94.5	74.8	89.8	40.0
57.77	75.2	60.5	74.7	69.3	86.1	83.3	62.9	69.1	75.3	80.7	98.9	96.1	95.2	76.3	90.6	42.6
63.41	76.6	64.2	76.6	70.9	86.8	84.7	64.1	70.3	78	82.3	99.2	96.6	95.7	78	91.6	43.4

Leiv Eirikssons vei 39

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no NGU -

							Coul	ter data (Ki	umulativ vol	um % <)						
Løpenr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
NGU prøvenr.						190118	190303	190169	190223	190225	190227	190232	190237	190247	190269	190274
Prøve nr. →	Hynne	Minn	Tana	Hynne 2023	N-std	R3188MC05_	R3190MC09A_	R3196MC06_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3200MC07A_	R3224MC08A_
Diameter(µm) ↓	-			•		0-1 cm	0-1cm	0-1 cm	0-1cm	2-3cm	4-5cm	9-10cm	14-15CM	24-25cm	46-47Cm	0-1cm
69.61	78	68	78.6	72.6	87.6	86.1	65.5	71.8	80.6	84	99.4	97.2	96.3	79.8	92.6	44.2
76.42	79.3	71.6	80.8	74.2	88.3	87.7	67.1	73.6	83.2	85.7	99.6	97.7	96.8	81.8	93.7	45.2
83.89	80.7	75.1	83.1	75.9	89	89.3	69	75.7	85.8	87.5	99.7	98.3	97.3	83.8	94.8	46.4
92.09	82	78.4	85.5	77.5	89.7	90.9	71.2	78.2	88.2	89.2	99.8	98.9	97.8	85.8	95.9	48.3
101.1	83.3	81.4	87.9	79.1	90.5	92.4	73.6	80.9	90.4	90.8	99.9	99.4	98.1	87.7	96.8	51.3
111	84.5	84.1	90.2	80.5	91.3	93.8	76.3	83.8	92.3	92.3	99.97	99.7	98.4	89.5	97.5	55.8
121.8	85.5	86.4	92.3	81.9	92.3	94.9	79.2	86.7	93.9	93.7	99.99	99.9	98.7	91.1	98	61.8
133.7	86.5	88.4	94.1	83.2	93.5	95.8	82	89.5	95.3	94.9	100	99.99	98.9	92.5	98.4	69.2
146.8	87.3	90.1	95.7	84.4	94.9	96.5	84.8	92.1	96.4	95.9	100	99,999	99.1	93.8	98.8	77.1
161.2	88.1	91.5	97	85.5	96.4	97	87.3	94.5	97.5	96.9	100	100	99.3	95.2	99.1	84 7
176.9	88.9	92.8	98.1	86.5	97.8	97.6	89.4	96.4	98.3	97.8	100	100	99.5	96.5	99.5	91.1
194.2	89.7	93.9	99	87.5	98.9	98.1	91.2	98	99.1	98.6	100	100	99.7	97.8	99.7	95.7
213.2	90.5	94.9	99.5	88.5	99.6	98.7	92.6	99.1	99.6	99.3	100	100	99.8	98.8	99.9	98.4
234.1	01.3	05.7	00.0	80.4	00.0	00.3	03.7	00.7	00.0	00.7	100	100	00.0	00.5	00.08	00.4
256.0	02	06.5	00.08	00.3	00.00	00.7	04.5	00.0	00.08	00.0	100	100	00.08	00.0	00,000	00.0
230.9	027	90.5	00.008	90.3 01	100	00.0	94.5	00.00	00,000	00.00	100	100	00,006	00.08	100	00 007
202.1	92.7	07.4	100	01.6	100	00.00	95	100	100	00,000	100	100	100	00,000	100	100
309.0	93.3	97.4	100	91.0	100	99.90	90.0	100	100	99.999	100	100	100	99.999	100	100
339.9	93.0	97.7	100	92.1	100	99.999	90.0	100	100	100	100	100	100	100	100	100
373.1	94.3	97.9	100	92.6	100	100	96.1	100	100	100	100	100	100	100	100	100
409.6	94.8	98	100	93.1	100	100	96.5	100	100	100	100	100	100	100	100	100
449.7	95.3	98.2	100	93.7	100	100	97	100	100	100	100	100	100	100	100	100
493.6	95.9	98.4	100	94.5	100	100	97.6	100	100	100	100	100	100	100	100	100
541.9	96.6	98.7	100	95.5	100	100	98.3	100	100	100	100	100	100	100	100	100
594.9	97.5	99	100	96.7	100	100	99	100	100	100	100	100	100	100	100	100
653	98.5	99.2	100	98	100	100	99.5	100	100	100	100	100	100	100	100	100
716.8	99.3	99.5	100	99.2	100	100	99.8	100	100	100	100	100	100	100	100	100
786.9	99.9	99.7	100	99.8	100	100	99.97	100	100	100	100	100	100	100	100	100
863.9	99.99	99.9	100	99.98	100	100	99.998	100	100	100	100	100	100	100	100	100
948.3	100	99.98	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1041	100	99.998	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1143	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1255	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1377	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1512	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1660	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1822	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

-

-- Leiv Eirikssons vei 39

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no - NGU -

	Coulter data (Kumulativ volum % <)														
Løpenr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
NGU prøvenr.	190348						190406	190408	190410	190415	190420	190430	190452	190456	190458
Prøve nr. →	R3303MC10A_						R3310MC11A_	R3310MC11A_	R3310MC11A_	R3310MC11A_	R3310MC11A_	R3310MC11A_	R3310MC11A_	R3328MC12A_	R3328MC12A_
Diameter(µm) ↓	0-1cm	Hynne	Minn	Tana	Hynne 2023	N-std	0-1cm	2-3cm	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	0-1cm	2-3cm
0.375	0	0	0.022	0.18	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0.062	0.49	0	0	0	0	0	0	0	0	0	0	0
0.496	0	0	0.12	0.95	0	0	0	0	0	0	0	0	0	0	0
0.545	0	0	0.21	1.6	0	0	0	0	0	0	0	0	0	0	0
0.656	0	0.00013	0.43	3.31	0	0	0	0	0	0	0	0	0	0	0
0.721	Ő	0.0032	0.58	4.34	Ő	0.00035	Ő	Õ	Õ	Õ	Ő	Ő	Ő	Ő	Õ
0.791	0	0.025	0.74	5.46	0.0008	0.0065	0	0	0	0	0	0	0.00036	0	0.000007
0.868	0.00076	0.1	0.91	6.64	0.012	0.045	0.0019	0.00078	0.00072	0.0012	0.00082	0.00076	0.008	0.0011	0.0017
0.953	0.012	0.28	1.1	7.87	0.076	0.17	0.028	0.012	0.012	0.018	0.014	0.013	0.061	0.017	0.02
1.047	0.074	1.06	1.29	9.11	0.20	0.45	0.17	0.074	0.081	0.11	0.095	0.085	0.24	0.1	0.11
1.261	0.61	1.71	1.72	11.6	1.22	1.62	1.37	0.6	0.73	0.93	0.87	0.76	1.37	0.81	0.78
1.385	1.18	2.54	1.95	12.8	2.04	2.55	2.59	1.14	1.42	1.77	1.7	1.49	2.41	1.53	1.43
1.52	1.95	3.54	2.18	14	3.09	3.71	4.25	1.89	2.39	2.92	2.87	2.5	3.77	2.51	2.29
1.668	2.95	4.7	2.43	15.2	4.36	5.09	6.33	2.82	3.62	4.36	4.35	3.77	5.45	3.74	3.37
1.832	4.15	5.98	2.69	10.4	5.79	0.04	8.79	3.92	5.07	0.00	0.13	5.28	7.4	5.22	4.63
2.011	7 12	8 75	2.90	18.8	9.03	10.1	14.6	6.54	8.56	10.1	10.10	8.84	9.57	8.81	7.62
2.423	8.85	10.2	3.56	20	10.8	11.9	17.9	8.01	10.5	12.3	12.8	10.8	14.4	10.9	9.29
2.66	10.7	11.7	3.9	21.2	12.5	13.8	21.3	9.55	12.6	14.6	15.3	12.9	16.9	13	11
2.92	12.7	13.2	4.26	22.5	14.3	15.8	24.9	11.2	14.8	17.1	18	15	19.6	15.4	12.9
3.205	14.9	14.8	4.66	23.8	16.2	17.8	28.6	12.9	17.1	19.6	20.9	17.3	22.4	17.8	14.8
3.519	17.2	16.4	5.09	25.2	18.2	19.9	32.5	14.7	19.5	22.3	23.9	19.7	25.2	20.4	16.9
4 24	22.3	19.8	6.09	28.1	20.2	24.3	40.8	18.5	24 7	27.9	30.2	22.2	31.2	25.9	21.2
4.655	25	21.7	6.67	29.7	24.4	26.6	45.1	20.6	27.4	30.8	33.5	27.4	34.3	28.9	23.5
5.11	27.8	23.6	7.3	31.2	26.6	29	49.4	22.6	30.2	33.7	36.9	30	37.4	31.9	25.8
5.61	30.7	25.6	7.99	32.8	28.9	31.5	53.7	24.8	33	36.7	40.3	32.7	40.5	34.9	28.2
6.158	33.7	27.7	8.75	34.4	31.1	34	58	26.9	35.8	39.7	43.8	35.4	43.6	38.1	30.6
0.70	30.7	29.8	9.57	30	33.4	30.0	62.Z	29.1	38.7	42.0	47.2	38.1	40.7	41.2	33
8 147	39.7 42.8	34.2	10.5	39.2	38	39.1 41.7	70.1	33.4	41.4	43.4	53.8	40.8	49.0	44.4	37.8
8.943	45.9	36.4	12.5	40.7	40.3	44.2	73.8	35.5	46.8	50.8	56.9	45.8	55.2	50.7	40.2
9.817	49	38.7	13.6	42.3	42.6	46.8	77.2	37.5	49.3	53.3	59.9	48.2	57.7	53.8	42.5
10.78	52.1	40.9	14.8	43.9	44.8	49.2	80.3	39.5	51.6	55.7	62.7	50.4	60.1	56.8	44.8
11.83	55.1	43.1	16.1	45.5	46.9	51.6	83	41.5	53.8	57.8	65.3	52.5	62.3	59.8	46.9
12.99	58.1	45.3	17.5	47.2	49	53.9	85.5	43.3	55.8	59.8	67.7	54.4	64.2	62.6	49
14.20	63.9	47.4	20.5	40.0	52.9	58.1	89.3	45.1	59.3	63.3	71 7	57.8	67.6	67.8	53
17.18	66.7	51.5	22.1	52.2	54.7	60.1	90.9	48.4	60.8	64.9	73.5	59.4	69.2	70.2	54.8
18.86	69.5	53.4	23.9	53.9	56.5	62	92.2	50	62.2	66.4	75.1	60.9	70.6	72.4	56.7
20.7	72.2	55.2	25.8	55.6	58.1	63.8	93.4	51.5	63.5	67.8	76.7	62.4	72	74.4	58.5
22.73	75	57	27.8	57.3	59.8	65.6	94.5	53.1	64.8	69.3	78.2	63.9	73.4	76.3	60.4
24.95	77.8	58.7	30	59	61.4	67.4	95.4	54.8	66	70.8	79.6	65.4	74.7	78.2	62.3
27.39	83.2	62	32.4	62.6	64.5	70.8	90.3	58.2	68.4	72.4	82.5	68.6	70.1	81.7	66.2
33.01	85.8	63.7	37.8	64.5	66	72.4	97.6	60	69.6	75.6	83.9	70.2	78.7	83.4	68.2
36.24	88.1	65.3	40.8	66.4	67.4	73.9	98.1	61.9	70.7	77.4	85.2	71.8	80	85.1	70.3
39.78	90.2	66.8	43.9	68.3	68.8	75.3	98.5	63.8	71.8	79.1	86.5	73.5	81.3	86.7	72.3
43.67	92	68.2	47.3	70.2	70.1	76.5	98.8	65.8	73	80.9	87.6	75.1	82.5	88.3	74.4
47.94	93.4	69.7	50.8	72	71.5	77.7	99	67.8	74.1	82.7	88.7	76.6	83.7	89.8	76.4
52.02 57.77	94.5 95.4	72.6	54.5 58.2	/ 3.8 75.7	12.8 74.2	/ ö.ö 70.0	99.Z 99.Z	70 72 3	75.3 76.6	84.5 86.3	89.0 90.6	78.1 79.5	84.9 86	91.3	78.5 80.6
63.41	96.1	74.2	62	77.6	75.6	81	99.6	74.7	78	88	91.5	80.9	87.2	94.1	82.6

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no NGU -

		Coulter data (Kumulativ volum % <)													
Løpenr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
NGU prøvenr.	190348						190406	190408	190410	190415	190420	190430	190452	190456	190458
Prøve nr. →	R3303MC10A_						R3310MC11A_	R3328MC12A_	R3328MC12A_						
Diameter(µm) ↓	0-1cm	Hynne	Minn	Tana	Hynne 2023	N-std	0-1cm	2-3cm	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	0-1cm	2-3cm
69.61	96.7	75.8	65.9	79.6	77	82	99.8	77.2	79.4	89.5	92.4	82.2	88.3	95.3	84.7
76.42	97.3	77.4	69.7	81.8	78.4	83	99.9	79.7	81	90.9	93.2	83.5	89.4	96.3	86.7
83.89	97.7	79	73.3	84.1	79.7	84.1	99.99	82.3	82.6	92.2	94	84.7	90.5	97.3	88.6
92.09	98.1	80.5	76.8	86.5	81.1	85.1	99.999	84.8	84.3	93.3	94.8	86	91.4	98	90.3
101.1	98.4	81.9	80	88.7	82.4	86.3	100	87.2	85.9	94.2	95.5	87.2	92.3	98.7	91.9
111	98.7	83.3	82.8	90.9	83.6	87.6	100	89.5	87.6	95.1	96.1	88.4	93.1	99.1	93.2
121.8	98.9	84.6	85.3	92.8	84.7	89.2	100	91.6	89.2	95.8	96.7	89.5	93.8	99.5	94.3
133.7	99	85.8	87.5	94.5	85.7	91	100	93.4	90.8	96.4	97.3	90.6	94.5	99.7	95.3
146.8	99.1	86.9	89.3	96	86.6	93	100	95	92.4	97	97.8	91.7	95.1	99.8	96.2
161.2	99.3	87.9	90.9	97.2	87.5	95.1	100	96.4	93.9	97.6	98.3	92.7	95.8	99.9	97.1
176.9	99.5	88.8	92.3	98.2	88.3	97	100	97.6	95.5	98.3	98.8	93.8	96.5	99.9	97.9
194.2	99.7	89.6	93.6	99	89.2	98.5	100	98.6	96.9	98.9	99.2	95	97.3	99.9	98.7
213.2	99.8	90.3	94.7	99.5	90.1	99.4	100	99.3	98.1	99.5	99.6	96.2	98.2	99.96	99.3
234.1	99.9	91	95.8	99.9	91	99.9	100	99.7	99	99.8	99.8	97.4	99	99.99	99.7
256.9	99.99	91.7	96.7	99.97	91.9	99.98	100	99.9	99.6	99.95	99.96	98.5	99.6	99.997	99.9
282.1	99.999	92.4	97.4	99.998	92.6	99.999	100	99.99	99.9	99.99	99.99	99.2	99.9	100	99.99
309.6	100	93.1	97.9	100	93.2	100	100	99.999	99.98	100	100	99.7	99.98	100	99.999
339.9	100	93.8	98.2	100	93.8	100	100	100	99.999	100	100	99.9	99.999	100	100
373.1	100	94.3	98.3	100	94.3	100	100	100	100	100	100	99.99	100	100	100
409.6	100	94.9	98.3	100	94.8	100	100	100	100	100	100	100	100	100	100
449.7	100	95.6	98.4	100	95.4	100	100	100	100	100	100	100	100	100	100
493.6	100	96.4	98.5	100	96.1	100	100	100	100	100	100	100	100	100	100
541.9	100	97.3	98.7	100	96.9	100	100	100	100	100	100	100	100	100	100
594.9	100	98.2	98.9	100	97.8	100	100	100	100	100	100	100	100	100	100
653	100	99.1	99.2	100	98.7	100	100	100	100	100	100	100	100	100	100
716.8	100	99.7	99.5	100	99.5	100	100	100	100	100	100	100	100	100	100
786.9	100	99.9	99.7	100	99.9	100	100	100	100	100	100	100	100	100	100
863.9	100	99.99	99.9	100	99.99	100	100	100	100	100	100	100	100	100	100
948.3	100	100	99.98	100	100	100	100	100	100	100	100	100	100	100	100
1041	100	100	99.998	100	100	100	100	100	100	100	100	100	100	100	100
1143	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1255	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1377	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1512	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1660	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1822	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

· NGU -

Leiv Eirikssons vei 39

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no

Indures/ Hollperson 19:04:0 10:05:0 00:0 0 0<		Coulter data (Kumulativ volum % <)														
NO. (prover. 19445	Løpenr.	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
Protect B32380C124, B32280C124, B32280C124, B32380C124, B32480C144, B32480	NGU prøvenr.	190460	190465	190470	190480	190502						190508	190558	190560	190562	190567
Determining 44.00 94.00 No. True Processor	Prøve nr. →	R3328MC12A_	R3328MC12A	R3328MC12A_	R3328MC12A_	R3328MC12A_						R3333MC13A	R3345MC14A_	R3345MC14A_	R3345MC14A_	R3345MC14A_
0.057 0 <th>Diameter(µm) ↓</th> <th>4-5cm</th> <th>9-10cm</th> <th>14-15cm</th> <th></th> <th>46-47cm</th> <th>Hynne</th> <th>Minn</th> <th>Tana</th> <th>Hynne 2023</th> <th>N-std</th> <th>0-1cm</th> <th>0-1cm</th> <th>2-3cm</th> <th>4-5cm</th> <th>9-10cm</th>	Diameter(µm) ↓	4-5cm	9-10cm	14-15cm		46-47cm	Hynne	Minn	Tana	Hynne 2023	N-std	0-1cm	0-1cm	2-3cm	4-5cm	9-10cm
0.422 0 <td>0.375</td> <td>0</td>	0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
bbbs 0	0.412	0	0	0	0	0	0	0.023	0.18	0	0	0	0	0	0	0
0.646 0 <td>0.452</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0.065</td> <td>0.5</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0.452	0	0	0	0	0	0	0.065	0.5	0	0	0	0	0	0	0
0.066 0 <td>0.545</td> <td>0</td> <td>õ</td> <td>0</td> <td>õ</td> <td>õ</td> <td>õ</td> <td>0.22</td> <td>1.61</td> <td>õ</td> <td>0</td> <td>0</td> <td>0</td> <td>õ</td> <td>0</td> <td>0</td>	0.545	0	õ	0	õ	õ	õ	0.22	1.61	õ	0	0	0	õ	0	0
0.658 0 <td>0.598</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0.33</td> <td>2.42</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0.598	0	0	0	0	0	0	0.33	2.42	0	0	0	0	0	0	0
0.721 0 0 0 0.0068 0.01 0.0068 0.0068 0.0068 0.014 0.0068 0.014 0.025 0.0019 0.0069 0.0013 0.013 0.013 0.013 0.014 0.025 0.016 0.014 0.025 0.016 1447 0.005 0.013 0.013 0.014 0.025 0.038 0.014 0.014 0.025 0.034 0.014 0.025 0.034 0.014 0.026 0.024 0.016 1447 0.005 0.073 0.12 0.13 0.13 0.33 0.44 0.11 0.038 0.32 0.34 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.15 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14	0.656	0	0	0	0	0	0.00037	0.46	3.36	0	0	0	0	0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.721	0	0	0	0	0	0.0061	0.6	4.4	0.0003	0.00026	0	0	0	0	0
bess babes	0.791	0	0	0	0	0	0.04	0.77	5.53	0.0055	0.0055	0	0	0	0	0
1677 0.002 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.016 0.016 0.014 0.016 1.149 0.65 0.72 0.61 0.63 1.11 1.98 1.15 1.13 1.38 1.67 0.64 0.68 0.24 0.61 0.74 1.66 1.385 1.27 1.41 1.14 1.98 1.5 1.13 2.16 0.64 0.63 0.47 0.64	0.868	0.00047	0.00076	0.00092	0.0015	0.0018	0.14	0.95	6.74	0.039	0.041	0.00085	0.00079	0.0016	0.0017	0.0019
1.149 1.22 0.28 0.24 0.44 1.26 1.25 1.05 0.79 0.04 0.88 0.35 0.33 0.47 0.51 1.261 0.63 0.77 1.41 1.14 1.72 2.03 2.04 2.04 1.3 2.18 2.06 1.0 1.74 2.43 1.09 2.14 1.852 1.77 1.41 1.44 1.72 2.06 2.01 1.5 2.18 2.03 3.01 1.74 2.43 1.09 2.14 1.852 4.72 5.03 3.8 5.66 6.69 2.61 1.67 5.66 7.04 6.94 6.35 6.37 6.66 6.99 2.011 6.33 6.7 5.61 1.18 1.13 3.74 3.3 1.11 6.86 0.52 1.11 1.03 1.1 1.03 1.1 1.03 1.1 1.03 1.14 1.03 1.14 1.03 1.14 1.03 1.14 1.03	0.953	0.0093	0.013	0.013	0.021	0.025	0.30	1.15	7.90	0.15	0.17	0.015	0.014	0.025	0.024	0.027
1261 003 0.72 0.61 0.93 1.11 1.98 1.18 1.18 1.67 0.08 0.88 1.27 1.08 1.16 1.552 2.17 2.33 1.85 2.71 3.33 4.01 2.24 1.3 2.16 2.34 4.01 3.22 3.44 4.01 3.22 3.44 1.52 2.17 2.33 1.85 2.74 8.32 6.01 7.11 6.86 6.24 4.04 4.35 5.7 6.5 6.54 7.5 7.71 7.71 7.5 7.5 7.71 7.5 7.5 7.71 7.5 7.5	1 149	0.25	0.000	0.26	0.12	0.13	1.26	1.50	10.5	0.79	0.43	0.38	0.35	0.53	0.47	0.10
1.885 1.127 1.41 1.14 1.72 2.06 2.07 2.33 4.10 2.247 2.43 3.18 3.0 3.22 2.44 4.01 3.22 3.44 1.682 2.317 2.33 1.57 2.73 4.14 4.02 5.28 2.44 4.35 6.33 4.34 6.44 6.7 5.08 1.014 4.32 5.67 7.7 4.14 4.02 5.28 2.44 4.35 6.44 6.6 4.75 5.08 2.017 4.32 6.66 6.31 9.43 1.13 9.76 3.19 1.08 1.14 1.09 1.14	1.261	0.63	0.72	0.61	0.93	1.11	1.98	1.8	11.8	1.38	1.67	0.96	0.88	1.27	1.08	1.16
1.52 2.71 2.36 1.65 2.78 3.43 4.01 3.22 2.04 4.01 3.22 3.45 1.688 3.33 3.67 2.75 4.11 4.22 5.26 2.64 1.55 4.35 5.88 4.01 4.27 5.06 6.09 2.07 6.12 6.05 6.37 6.56 6.09 2.07 6.12 6.05 6.37 6.56 6.09 6.09 1.1 6.05 6.37 6.66 6.09	1.385	1.27	1.41	1.14	1.72	2.06	2.9	2.04	13	2.18	2.66	1.9	1.74	2.43	1.99	2.14
1688 3.33 3.87 2.75 4.11 4.92 5.28 2.84 15.6 4.35 5.88 4.91 4.49 6 4.75 5.08 2.2077 6.12 5.05 6.31 7.43 8.63 6.74 6.64 6.55 6.57 6.56 6.74 6.64 6.56 6.74 6.64 6.56 6.74 6.64 6.64 6.56 6.74 6.65 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.6	1.52	2.17	2.36	1.85	2.78	3.33	4.01	2.28	14.3	3.18	3.9	3.22	2.94	4.01	3.22	3.45
1822 4.72 5.03 3.8 5.68 6.69 6.81 6.19 3.04 17.1 5.68 7.04 6.94 6.93 6.37 6.55 6.99 2.017 6.32 6.77 5 7 1.14 1.14 6.15 1.14 3.07 1.03 1.02 1.28 1.47 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.35 1.71 1.41 2.25 1.41 1.71 2.1 1.94 2.29 1.34 1.72 2.1 1.22 2.1 1.14 2.1 2.25 1.16 1.15 2.1 2.1 2.20 2.15 1.15 2.1 2.0 2.1 2.20 2.1 1.15 2.6 2.0 3.0 3.1 2.2 2.4 3.0 3.1 2.2 2.4 3.	1.668	3.33	3.57	2.75	4.11	4.92	5.28	2.54	15.5	4.35	5.38	4.91	4.49	6	4.75	5.08
2.011 6.33 6.76 5 1.47 8.19 3.09 1.79 1.71 8.86 9.28 8.5 1.11 8.61 9.14 2.061 12.1 12.7 9.18 13.8 16.5 13.4 4.05 21.6 11.8 14.9 17.8 16.4 20.5 15.8 16.6 2.062 14.4 15 10.7 16.1 19.3 14.7 4.42 22.9 15.4 19.4 22.8 27.6 21.8 20.5 15.8 16.6 3.051 16.7 17.4 12.4 18.6 22.3 16.4 4.82 24.2 15.1 19.2 24.4 22.6 27.6 21.3 22.3 3.863 21.8 22.7 15.8 24 25.7 20.1 5.7 20.1 20.2 20.4 33.8 35.4 25.4 22.4 23.4 23.8 35.4 25.3 35.4 25.3 35.4 25.3 35.4 25.3	1.832	4.72	5.03	3.8	5.68	6.8	6.69	2.81	16.7	5.68	7.04	6.94	6.35	8.37	6.56	6.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.011	6.33	6.7	5	7.47	8.93	8.19	3.09	17.9	7.11	8.86	9.28	8.5	11.1	8.61	9.14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.207	0.12	0.00	7 71	9.43	13.8	9.70	3.39	19.1	0.02 10.2	10.0	11.9	10.9	14	10.9	11.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.425	12.1	12.7	9.18	13.8	16.5	13	4.05	20.5	11.8	12.0	14.7	16.4	20.5	15.5	16.6
3.20516.717.417.412.418.622.316.44.8224.215.119.224.422.627.621.322.33.86321.822.715.82425.720.15.7527.118.723.931.829.635.427.328.44.2424.525.517.726.932.122.629.620.626.435.833.335.530.431.74.65527.328.419.629.835.624.16.6730.122.62939.937.343.733.735.55.1133.234.423.635.943.328.48.2133.426.734.448.345.462.240.341.96.16936.337.525.639.946.730.883.528.137.242.86161.641.141.347.93738.45.0133.234.445.733.426.734.446.356.445.145.745.36.16936.337.525.639.350.933.242.86161.661.646.140.745.36.1644.445.733.851.561.840.212.741.537.646.665.162.465.653.853.37.1142.446.553.655.538.157.269.917.173.675.	2.92	14.4	15	10.7	16.1	19.3	14.7	4.42	22.9	13.4	17	21	19.4	23.9	18.5	19.4
3.51919.22014.121.225.418.25.2725.616.921.5282631.424.225.33.86324.825.517.725.932.122.16.2928.620.626.435.833.339.530.423.737.74.65527.328.419.628.835.621.662.730.122.62939.937.343.737.735.75.1130.231.421.632.839.326.27.5131.724.631.644.141.347.937.736.45.6132.234.423.639.326.27.5131.724.631.644.141.347.937.736.46.16836.337.525.639.146.730.68.983528.837.252.649.666.443.748.36.17639.340.627.742.260.5339.8236.6314065.166.647.650.552.76.14745.446.731.844.345.137.711.739.935.445.661.165.165.650.553.967.67.4145.446.731.844.864.137.711.739.935.445.661.166.677.687.667.68.14745.553.854.645.654.6 <td>3.205</td> <td>16.7</td> <td>17.4</td> <td>12.4</td> <td>18.6</td> <td>22.3</td> <td>16.4</td> <td>4.82</td> <td>24.2</td> <td>15.1</td> <td>19.2</td> <td>24.4</td> <td>22.6</td> <td>27.6</td> <td>21.3</td> <td>22.3</td>	3.205	16.7	17.4	12.4	18.6	22.3	16.4	4.82	24.2	15.1	19.2	24.4	22.6	27.6	21.3	22.3
3.86321.822.715.82428.720.15.7627.118.723.931.829.635.427.328.44.65527.328.419.629.835.624.16.8730.122.62939.937.343.733.735.75.1130.231.421.628.839.326.27.5131.724.626.131.644.141.347.93738.45.6133.234.423.635.94328.48.2133.426.734.448.345.452.240.341.96.15836.337.525.639.445.533.398.236.6314056.953.960.647.146.36.7639.340.627.742.250.533.39.8236.6314056.953.960.647.146.77.42142.443.729.845.353.339.224.865.162.468.555.28.14745.446.731.848.137.711.738.933.242.86158.164.655.552.68.44345.549.731.848.137.711.738.935.242.860.572.25758.49.81751.552.63654.465.413.943.139.951.272.870.675.7	3.519	19.2	20	14.1	21.2	25.4	18.2	5.27	25.6	16.9	21.5	28	26	31.4	24.2	25.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.863	21.8	22.7	15.8	24	28.7	20.1	5.75	27.1	18.7	23.9	31.8	29.6	35.4	27.3	28.4
4 6b5 $2/3$ 284 19.6 29.8 38.6 24.1 6.87 30.1 22.6 29 39.9 $3/3$ 437 $33/3$ $35/3$ 5.61 33.2 34.4 23.6 35.9 43 28.4 821 33.4 26.7 34.4 48.3 45.4 622 40.3 41.9 6.158 36.3 37.5 25.6 39.1 40.7 30.6 89.9 35.2 86.6 31.4 40.5 64.6 64.4 43.7 45.3 6.76 39.3 40.6 27.7 42.2 50.5 33 9.62 36.6 31.4 $40.56.9$ 53.9 60.6 47.1 48.7 7.421 42.4 43.7 29.8 45.1 37.7 11.7 38.3 32.2 22.6 61.6 65.6 62.2 65.5 52.6 8.147 45.4 46.7 31.8 48.4 58.1 37.7 11.7 38.9 35.4 45.6 65.1 62.4 68.5 53.8 65.3 8943 48.5 49.7 33.9 45.1 45.1 45.1 33.9 61.5 77.2 77.6 62.2 67.6 66.1 66.5 72.2 77.6 86.4 45.6 65.1 65.7 77.7 60.2 61.4 9.677 53.6 64.1 15.1 44.6 44.1 53.9 61.6 65.7 75.7 60.2 66.1 11.83	4.24	24.5	25.5	17.7	26.9	32.1	22.1	6.29	28.6	20.6	26.4	35.8	33.3	39.5	30.4	31.7
5.1130.231.421.632.639.326.2 7.31 31.724.631.644.141.341.441.3 <th< td=""><td>4.655</td><td>27.3</td><td>28.4</td><td>19.6</td><td>29.8</td><td>35.6</td><td>24.1</td><td>6.87</td><td>30.1</td><td>22.6</td><td>29</td><td>39.9</td><td>37.3</td><td>43.7</td><td>33.7</td><td>35</td></th<>	4.655	27.3	28.4	19.6	29.8	35.6	24.1	6.87	30.1	22.6	29	39.9	37.3	43.7	33.7	35
6.16836.337.525.639.146.730.68.983522.837.212.640.656.443.745.36.7630.340.627.742.250.5339.8236.6314056.955.966.647.146.77.42142.446.731.845.358.137.210.738.333.242.866.152.466.552.58.14745.446.731.845.458.137.711.739.935.445.665.162.465.553.855.38.94345.540.733.951.558.440.211.731.937.445.665.162.465.553.855.39.84351.552.63654.465.442.213.130.951.272.870.675.760.264.110.7854.355.538.157.268.945.115.144.442.255.579.578.181.766.166.712.9950.760.742.160.575.240.517.840.740.363.446.3 </td <td>5.11</td> <td>30.2</td> <td>31.4 34.4</td> <td>21.0</td> <td>32.0 35.9</td> <td>39.3</td> <td>20.2</td> <td>7.51</td> <td>31.7</td> <td>24.0</td> <td>31.0</td> <td>44.1</td> <td>41.3</td> <td>47.9</td> <td>37 40 3</td> <td>30.4 /1 Q</td>	5.11	30.2	31.4 34.4	21.0	32.0 35.9	39.3	20.2	7.51	31.7	24.0	31.0	44.1	41.3	47.9	37 40 3	30.4 /1 Q
$\vec{0.76}$ 39.3 40.6 27.7 42.2 50.5 33 9.82 36.6 31 40 66.9 53.9 60.6 47.1 48.7 7.421 42.4 43.7 29.8 45.3 54.3 35.3 10.7 38.3 33.2 42.8 66.1 62.4 68.5 53.8 65.3 8.147 45.4 46.7 31.8 48.4 58.1 37.7 11.7 39.3 33.4 42.6 66.1 62.4 68.5 53.8 65.3 8.147 45.4 46.7 33.9 51.5 61.8 40.2 12.7 41.5 37.6 44.4 69 66.6 72.2 57.7 68.1 9.817 51.5 52.6 38.1 57.2 68.9 45.1 15.1 44.8 42.1 53.9 76.3 74.4 78.8 65.2 61.4 10.78 54.3 55.5 38.1 57.2 69.9 47.5 15.4 46.4 42.2 65.5 78.1 78.2 69.9 12.29 59.7 60.7 42.1 62.2 45.1 52.2 49.9 17.8 49.7 48.3 59.1 62.4 81.5 84.2 79.3 12.29 59.7 60.7 42.1 62.2 75.2 49.9 17.8 49.7 48.3 59.1 62.4 81.5 84.2 79.3 12.49 65.7 87.1 52.2 79.2 $49.$	6.158	36.3	37.5	25.6	39.1	46.7	30.6	8.98	35	28.8	37.2	52.6	49.6	56.4	43.7	45.3
7.42142.443.729.845.354.335.310.738.333.242.86158.164.650.5528.14745.446.731.848.458.137.711.739.935.445.666.162.468.553.855.38.94348.549.733.951.561.840.212.741.537.648.46966.572.25758.49.81751.552.63654.465.442.613.943.139.976.374.478.863.264.110.7854.355.538.157.266.945.115.144.842.165.579.578.181.766.166.767.666.767.769.9696914.2662.263.144.164.878.152.219.349.748.361.48584.666.371.571.271.115.6564.565.445.96760.654.522.85352.165.889.389.789.876.374.873.973.117.1866.667.547.769.185.760.752.165.889.389.789.876.374.873.974.873.973.173.173.173.173.173.173.173.173.275.274.874.874.874.874.874	6.76	39.3	40.6	27.7	42.2	50.5	33	9.82	36.6	31	40	56.9	53.9	60.6	47.1	48.7
8.14745.446.731.848.458.137.711.739.935.445.665.162.468.553.855.38.94345.549.731.851.561.840.212.741.537.646.66966.572.25758.49.81751.552.63654.465.442.613.943.139.951.272.870.675.760.261.410.7854.355.538.157.268.945.115.144.842.153.976.374.478.863.264.111.8357.158.240.159.972.247.516.446.444.256.579.578.181.766.166.712.9959.760.742.162.575.249.917.84846.359.182.481.584.268.96914.2662.263.144.164.879.361.350.363.787.387.388.273.973.117.1666.667.547.769.18356.622.55353.967.889.389.789.876.374.818.8668.669.549.571.185.158.724.354.753.967.889.389.789.876.374.818.8668.669.549.571.185.158.724.354	7.421	42.4	43.7	29.8	45.3	54.3	35.3	10.7	38.3	33.2	42.8	61	58.1	64.6	50.5	52
8.94348.549.733.951.561.840.212.741.537.648.46966.572.25758.49.81751.552.63654.465.442.613.943.139.951.272.870.675.760.261.410.7854.355.538.157.268.945.115.144.842.153.976.374.478.863.264.111.8357.158.230.157.249.917.848.446.359.182.481.584.268.96014.2662.263.144.164.878.152.219.349.748.361.485.584.686.371.571.215.6564.565.447.769.18356.622.55362.165.889.389.789.876.374.817.1866.667.547.769.18356.622.55362.165.889.389.789.876.377.920.770.471.351.2738760.726.256.465.769.792.693.592.680.777.922.7372.473.88760.726.256.455.769.796.194.993.782.879.324.9573.87554.676.690.464.630.659.95973	8.147	45.4	46.7	31.8	48.4	58.1	37.7	11.7	39.9	35.4	45.6	65.1	62.4	68.5	53.8	55.3
9.81751.552.63654.465.442.613.943.139.951.2 72.8 70.6 75.7 60.2 61.4 10.7854.355.538.157.268.945.115.144.842.153.9 76.3 74.4 78.8 63.2 64.1 11.8357.158.240.159.972.247.516.446.444.256.5 79.5 78.1 81.7 66.1 66.7 12.9959.760.742.162.575.249.9 17.8 48.4 46.3 59.1 82.4 81.6 86.3 71.5 71.2 15.6564.565.445.967 80.6 54.5 20.8 51.3 50.3 63.7 87.3 87.3 88.2 73.9 73.1 17.1866.667.547.7 69.1 83.5 56.6 22.5 53.5 52.1 67.8 91.1 91.8 91.3 78.5 74.8 18.8668.6 60.5 49.5 71.1 85.1 58.7 24.3 54.7 53.9 67.8 91.1 91.8 91.3 78.5 74.8 18.8668.6 60.5 49.5 71.1 85.7 62.7 28.3 58.1 57.3 71.5 94 94.9 93.7 82.8 79.3 22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.7 <	8.943	48.5	49.7	33.9	51.5	61.8	40.2	12.7	41.5	37.6	48.4	69	66.5	72.2	57	58.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9.817	51.5	52.6	36	54.4	65.4	42.6	13.9	43.1	39.9	51.2	72.8	70.6	75.7	60.2	61.4
11.6351.136.240.138.9 12.2 41.310.440.444.250.3 19.3 16.1 01.1 00.1 00.1 00.1 12.959.760.742.162.5 75.2 49.917.84846.359.182.481.584.268.96914.2662.263.144.164.878.152.219.349.748.361.48584.686.371.571.215.6564.555.447.769.18356.622.55352.165.889.389.789.876.374.817.1866.667.547.769.18356.622.55352.165.889.389.789.876.374.818.8668.669.549.571.185.158.724.354.753.967.891.191.891.378.576.422.7372.173.252.974.888.762.728.358.157.371.59494.993.782.878.324.9573.875.554.676.690.464.630.659.95973.295.196.197.488.880.727.3975.476.858.180.193.466.53361.760.674.996.197.496.882.286.930.0776.978.658.180.1 </td <td>10.70</td> <td>04.3 57.1</td> <td>55.5</td> <td>30.1</td> <td>57.2</td> <td>00.9</td> <td>45.1</td> <td>15.1</td> <td>44.0</td> <td>42.1</td> <td>53.9 E6 E</td> <td>70.3</td> <td>74.4</td> <td>70.0</td> <td>03.Z</td> <td>04.1 66.7</td>	10.70	04.3 57.1	55.5	30.1	57.2	00.9	45.1	15.1	44.0	42.1	53.9 E6 E	70.3	74.4	70.0	03.Z	04.1 66.7
14.2662.263.144.164.878.152.219.349.748.361.48584.686.371.273.915.6564.565.445.96780.654.520.851.350.363.787.387.388.273.973.117.1866.667.547.769.18356.622.55352.165.889.389.789.876.374.818.8668.669.549.571.185.158.724.354.753.967.891.191.891.378.576.420.770.471.351.2738760.726.256.455.769.792.693.592.680.777.922.7372.173.252.974.888.762.728.358.157.769.792.693.592.680.777.924.9573.87554.676.690.464.630.659.95973.295.196.194.884.880.727.3975.476.856.476.493.763.562.276.59797.886.788.885.533.0176.476.856.477.1.941.767.365.279.494.29998.892.386.133.788183.495.771.941.767.365.279.798.699.4	12.99	59.7	60.7	40.1	62.5	75.2	47.5	17.8	40.4	44.2	59.1	82.4	81.5	84.2	68.9	69
15.65 64.5 65.4 45.9 67 80.6 54.5 20.8 51.3 50.3 63.7 87.3 87.3 88.2 73.9 73.1 17.18 66.6 67.5 47.7 69.1 83 56.6 22.5 53 52.1 65.8 89.3 89.7 89.8 76.3 74.8 18.66 68.6 69.5 49.5 71.1 85.1 58.7 24.3 54.7 53.9 67.8 91.1 91.8 91.3 78.5 76.4 20.7 70.4 71.3 51.2 73 87 60.7 26.2 56.4 55.7 69.7 92.6 93.5 92.6 80.7 77.9 22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.3 71.5 94 94.9 93.7 82.8 79.3 24.95 73.8 75.5 54.6 76.6 90.4 64.6 30.6 59.9 59 73.2 95.1 96.1 94.8 84.8 80.7 27.39 75.4 76.8 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.9 82.1 30.07 76.9 78.6 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.8 83.5 33.01 78.4 80.3 59.9	14.26	62.2	63.1	44.1	64.8	78.1	52.2	19.3	49.7	48.3	61.4	85	84.6	86.3	71.5	71.2
17.18 66.6 67.5 47.7 69.1 83 56.6 22.5 53 52.1 65.8 89.3 89.7 89.8 76.3 74.8 18.66 68.6 69.5 49.5 71.1 85.1 58.7 24.3 54.7 53.9 67.8 91.1 91.8 91.3 78.5 76.4 20.7 70.4 71.3 51.2 73 87 60.7 26.2 56.4 55.7 69.7 92.6 93.5 92.6 80.7 77.9 22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.3 71.5 94 94.9 93.7 82.8 79.3 24.95 73.8 75 54.6 76.6 90.4 64.6 30.6 59.9 59 73.2 95.1 96.1 94.8 84.8 80.7 27.39 75.4 76.8 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.9 82.1 30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97 97.8 96.7 88.8 83.5 33.01 78.4 80.3 59.9 81.8 94.7 70.1 38.6 65.4 63.7 78 97.7 98.4 97.4 90.6 84.8 36.24 79.7 81.9 65.2	15.65	64.5	65.4	45.9	67	80.6	54.5	20.8	51.3	50.3	63.7	87.3	87.3	88.2	73.9	73.1
18.86 68.6 69.5 49.5 71.1 85.1 58.7 24.3 54.7 53.9 67.8 91.1 91.8 91.3 78.5 76.4 20.7 70.4 71.3 51.2 73 87 60.7 26.2 56.4 55.7 69.7 92.6 93.5 92.6 80.7 77.9 22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.7 69.7 92.6 93.5 92.6 80.7 79.3 24.95 73.8 75 54.6 76.6 90.4 64.6 30.6 59.9 59 73.2 95.1 96.1 94.8 84.8 80.7 27.39 75.4 76.8 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.9 82.1 30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97.7 97.8 96.7 88.8 83.5 30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97.7 97.8 96.7 88.8 83.5 30.07 78.4 80.3 59.9 81.8 95.7 71.9 41.7 67.3 65.2 79.4 98.2 99 98.4 93.7 87.4 36.24 79.7 81.8 <t< td=""><td>17.18</td><td>66.6</td><td>67.5</td><td>47.7</td><td>69.1</td><td>83</td><td>56.6</td><td>22.5</td><td>53</td><td>52.1</td><td>65.8</td><td>89.3</td><td>89.7</td><td>89.8</td><td>76.3</td><td>74.8</td></t<>	17.18	66.6	67.5	47.7	69.1	83	56.6	22.5	53	52.1	65.8	89.3	89.7	89.8	76.3	74.8
20.7 70.4 71.3 51.2 73 87 60.7 26.2 56.4 55.7 69.7 92.6 93.5 92.6 80.7 77.9 22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.3 71.5 94.9 94.9 93.7 82.8 79.3 24.95 73.8 75 54.6 76.6 90.4 64.6 30.6 59.9 59 73.2 95.1 96.1 94.8 84.8 84.8 80.7 27.39 75.4 76.8 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.9 82.1 30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97 97.8 96.7 88.8 83.5 33.01 78.4 80.3 59.9 81.8 94.7 70.1 38.6 65.4 63.7 78 97.7 98.4 97.4 90.6 84.8 36.24 79.7 81.9 61.7 83.4 95.7 71.9 41.7 67.3 65.2 79.4 98.6 99.4 98.4 93.7 87.4 39.78 81 83.5 63.5 84.9 96.6 73.5 45.6 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 39.78 81.8 8	18.86	68.6	69.5	49.5	71.1	85.1	58.7	24.3	54.7	53.9	67.8	91.1	91.8	91.3	78.5	76.4
22.73 72.1 73.2 52.9 74.8 88.7 62.7 28.3 58.1 57.3 71.5 94 94.9 93.7 82.8 79.3 24.95 73.8 75 54.6 76.6 90.4 64.6 30.6 59.9 59 73.2 95.1 96.1 94.8 84.8 80.7 27.39 75.4 76.8 56.4 78.4 91.9 66.5 33 61.7 60.6 74.9 96.1 97 95.8 86.9 82.1 30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97 97.8 96.7 88.8 83.5 33.01 78.4 80.3 59.9 81.8 94.7 70.1 38.6 65.4 63.7 78.4 98.4 97.4 90.6 84.8 36.24 79.7 81.9 61.7 83.4 95.7 71.9 41.7 67.3 65.2 79.4 98.6 99.4 98.4 93.7 87.4 39.78 81 83.5 63.5 84.9 96.6 73.5 45 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 43.67 82.2 84.9 65.2 86.3 97.7 71.9 41.7 67.3 65.2 79.4 98.6 99.4 98.4 93.7 87.4 39.78 81.8 83.5 63.5 <td< td=""><td>20.7</td><td>70.4</td><td>71.3</td><td>51.2</td><td>73</td><td>87</td><td>60.7</td><td>26.2</td><td>56.4</td><td>55.7</td><td>69.7</td><td>92.6</td><td>93.5</td><td>92.6</td><td>80.7</td><td>77.9</td></td<>	20.7	70.4	71.3	51.2	73	87	60.7	26.2	56.4	55.7	69.7	92.6	93.5	92.6	80.7	77.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.73	72.1	73.2	52.9	74.8	88.7	62.7	28.3	58.1	57.3	71.5	94	94.9	93.7	82.8	79.3
30.07 76.9 78.6 58.1 80.1 93.4 68.3 35.7 63.5 62.2 76.5 97 97.8 96.7 88.8 83.5 33.01 78.4 80.3 59.9 81.8 94.7 70.1 38.6 65.4 63.7 78 97.7 98.4 97.4 90.6 84.8 36.24 79.7 81.9 61.7 83.4 95.7 71.9 41.7 67.3 65.2 79.4 98.2 99 98 92.3 86.1 39.78 81 83.5 63.5 84.9 96.6 73.5 45 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 43.67 82.2 84.9 65.2 86.3 97.3 75.1 48.6 71 68 81.8 98.8 99.7 98.7 95 88.7 47.94 83.4 86.3 67 87.7 76.7 52.3 72.7 69.4 82.9 99 99.9 96 89.9 52.62 84.6 <t< td=""><td>∠4.95 27.30</td><td>13.8 75.4</td><td>75 76.8</td><td>54.0 56.4</td><td>70.0 78.4</td><td>90.4 01 0</td><td>04.0 66.5</td><td>30.0 33</td><td>59.9 61.7</td><td>59 60 6</td><td>13.2 74 9</td><td>95.1</td><td>90.1</td><td>94.8 95.8</td><td>04.8 86.9</td><td>0U./ 82.1</td></t<>	∠4.95 27.30	13.8 75.4	75 76.8	54.0 56.4	70.0 78.4	90.4 01 0	04.0 66.5	30.0 33	59.9 61.7	59 60 6	13.2 74 9	95.1	90.1	94.8 95.8	04.8 86.9	0U./ 82.1
33.01 78.4 80.3 59.7 81.9 61.7 83.4 95.7 71.9 41.7 67.3 65.2 79.4 98.2 99 98 92.3 86.1 39.78 81 83.5 63.5 84.9 96.6 73.5 45 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 43.67 82.2 84.9 65.2 86.3 97.3 75.1 48.6 71 68 81.8 98.8 99.4 98.4 93.7 87.4 47.94 83.4 86.3 67.3 75.1 48.6 71 68 81.8 98.8 99.7 98.7 95 88.7 47.94 83.4 86.3 67.7 76.7 52.3 72.7 69.4 82.9 99 99.9 99 96 89.9 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.99 99.9 99.6 89.9 95.5 75.7 74.5 <	30.07	76.9	78.6	58 1	80.1	93.4	68.3	35.7	63.5	62.2	76.5	90.1	97 R	96.7	88.8	83.5
36.24 79.7 81.9 61.7 83.4 95.7 71.9 41.7 67.3 65.2 79.4 98.2 99 98 92.3 86.1 39.78 81 83.5 63.5 84.9 96.6 73.5 45 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 43.67 82.2 84.9 65.2 86.3 97.3 75.1 48.6 71 68 81.8 98.8 99.7 98.7 95 88.7 47.94 83.4 86.3 67.5 97.7 76.7 52.3 72.7 69.4 82.9 99 99.9 99 96 89.9 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.99 99.6 99.9 99.2 96.8 91 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.99 99.4 99.9 99.4	33.01	78.4	80.3	59.9	81.8	94.7	70.1	38.6	65.4	63.7	78	97.7	98.4	97.4	90.6	84.8
39.78 81 83.5 63.5 84.9 96.6 73.5 45 69.1 66.7 80.7 98.6 99.4 98.4 93.7 87.4 43.67 82.2 84.9 65.2 86.3 97.3 75.1 48.6 71 68 81.8 98.8 99.7 98.7 95 88.7 47.94 83.4 86.3 67.7 76.7 52.3 72.7 69.4 82.9 99 99.9 96 99.9 96 89.9 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.99 99.2 96.8 91 57.77 85.9 89.1 70.5 89.8 95.5 79.9 60.1 76.4 72 84.7 99.2 99.9 99.3 97.5 92.1 63.1 87.2 90.5 72.2 90.8 98.9 81.5 64.1 76.3 73.5 85.5 99.4 100 99.5 99.3 97.5 93.1 93.1	36.24	79.7	81.9	61.7	83.4	95.7	71.9	41.7	67.3	65.2	79.4	98.2	99	98	92.3	86.1
43.67 82.2 84.9 65.2 86.3 97.3 75.1 48.6 71 68 81.8 98.8 99.7 98.7 95 88.7 47.94 83.4 86.3 67 87.5 97.7 76.7 52.3 72.7 69.4 82.9 99 99.9 99 96 89.9 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.96 99.2 96.8 91 57.77 85.9 89.1 70.5 89.8 98.5 79.9 60.1 76.4 72 84.7 99.2 99.9 99.3 97.5 92.1 63.1 87.2 90.5 72.2 90.8 98.9 81.5 64.1 78.3 73.5 85.5 99.4 100 99.5 98.1 93.1	39.78	81	83.5	63.5	84.9	96.6	73.5	45	69.1	66.7	80.7	98.6	99.4	98.4	93.7	87.4
47.94 83.4 86.3 67 87.5 97.7 76.7 52.3 72.7 69.4 82.9 99 99.9 99 96 89.9 52.62 84.6 87.7 68.7 88.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.96 99.2 96.8 91 57.77 85.9 89.1 70.5 89.8 98.5 79.9 60.1 76.4 72 84.7 99.2 99.9 99.3 97.5 92.1 63.1 87.2 90.5 72.2 90.8 98.9 81.5 64.1 78.3 73.5 85.5 99.4 100 99.5 98.1 93.1	43.67	82.2	84.9	65.2	86.3	97.3	75.1	48.6	71	68	81.8	98.8	99.7	98.7	95	88.7
52.62 84.6 87.7 68.7 98.2 78.3 56.2 74.5 70.7 83.8 99.1 99.96 99.2 96.8 91 57.77 85.9 89.1 70.5 89.8 98.5 79.9 60.1 76.4 72 84.7 99.2 99.99 99.3 97.5 92.1 63.41 87.2 90.5 72.2 90.8 98.9 81.5 64.1 78.3 73.5 85.5 90.4 100 99.5 98.1 93.1	47.94	83.4	86.3	67	87.5	97.7	76.7	52.3	72.7	69.4	82.9	99	99.9	99	96	89.9
57.77 55.9 59.1 70.5 59.8 96.5 79.9 60.1 76.4 72 64.7 99.2 99.99 99.3 97.5 92.1 63.41 87.2 90.5 72.2 90.8 98.9 81.5 64.1 78.3 73.5 85.5 90.4 100 90.5 98.1 93.1	52.62	84.6	87.7	68.7	88.7	98.2	78.3	56.2	74.5	70.7	83.8	99.1	99.96	99.2	96.8	91
	57.77	85.9 87.2	89.1 90 5	70.5 72.2	89.8 90 r	98.5 98 0	79.9 81.5	6/ 1	/ ២.4 78 3	12 73 5	84.7 85.5	99.2 QQ 1	99.99 100	99.3 90 5	97.5 QR 1	92.1 93.1

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE UNDUR

	Coulter data (Kumulativ volum % <)														
Løpenr.	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
NGU prøvenr.	190460	190465	190470	190480	190502						190508	190558	190560	190562	190567
Prøve nr. →	R3328MC12A	R3328MC12A	R3328MC12A	R3328MC12A	R3328MC12A_						R3333MC13A	R3345MC14A	R3345MC14A	R3345MC14A	R3345MC14A
Diameter(µm) ↓	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	Hynne	Minn	Tana	Hynne 2023	N-std	0-1cm	0-1cm	2-3cm	4-5cm	9-10cm
69.61	88.5	91.8	74	91.8	99.2	83.1	68.1	80.3	75	86.3	99.6	100	99.7	98.6	94.1
76.42	89.9	93	75.7	92.7	99.5	84.7	72.1	82.5	76.5	87.1	99.7	100	99.8	99.1	95
83.89	91.2	94.2	77.5	93.5	99.8	86.3	75.8	84.7	78.1	88	99.8	100	99.9	99.4	95.8
92.09	92.5	95.3	79.3	94.3	99.9	87.9	79.4	87	79.7	88.8	99.9	100	99.9	99.7	96.5
101.1	93.7	96.2	81.2	95	99.98	89.3	82.6	89.2	81.2	89.7	99.97	100	99.98	99.9	97.1
111	94.7	97.1	83.1	95.6	99.997	90.7	85.5	91.3	82.6	90.7	99.99	100	99.99	99.97	97.7
121.8	95.6	97.8	85.1	96.1	100	91.9	88.1	93.3	83.9	91.9	99.999	100	99.999	99.996	98.1
133.7	96.4	98.4	87.1	96.5	100	92.9	90.2	95	85	93.3	100	100	100	100	98.4
146.8	97.2	98.9	89.1	96.9	100	93.7	92	96.5	86.2	94.8	100	100	100	100	98.7
161.2	98	99.3	91.2	97.4	100	94.5	93.6	97.8	87.2	96.5	100	100	100	100	99
176.9	98.7	99.6	93.2	98	100	95.2	94.9	98.8	88.3	97.9	100	100	100	100	99.4
194.2	99.3	99.8	95.2	98.6	100	96.1	96.1	99.4	89.3	99.1	100	100	100	100	99.7
213.2	99.7	99.9	96.9	99.2	100	97.1	97.2	99.8	90.3	99.7	100	100	100	100	99.9
234.1	99.9	99.99	98.2	99.7	100	98.1	98.1	99.96	91.2	99.9	100	100	100	100	99.98
256.9	99.99	99.999	99.2	99.9	100	98.9	98.9	99.996	92.1	99.996	100	100	100	100	99.998
282.1	99.999	100	99.7	99.98	100	99.5	99.4	100	92.9	100	100	100	100	100	100
309.6	100	100	99.95	99.999	100	99.9	99.8	100	93.7	100	100	100	100	100	100
339.9	100	100	99.996	100	100	99.98	99.9	100	94.3	100	100	100	100	100	100
373.1	100	100	100	100	100	99.999	99.99	100	94.9	100	100	100	100	100	100
409.6	100	100	100	100	100	100	100	100	95.4	100	100	100	100	100	100
449.7	100	100	100	100	100	100	100	100	96	100	100	100	100	100	100
493.6	100	100	100	100	100	100	100	100	96.6	100	100	100	100	100	100
541.9	100	100	100	100	100	100	100	100	97.3	100	100	100	100	100	100
594.9	100	100	100	100	100	100	100	100	98.1	100	100	100	100	100	100
653	100	100	100	100	100	100	100	100	98.9	100	100	100	100	100	100
716.8	100	100	100	100	100	100	100	100	99.6	100	100	100	100	100	100
786.9	100	100	100	100	100	100	100	100	99.9	100	100	100	100	100	100
863.9	100	100	100	100	100	100	100	100	99.99	100	100	100	100	100	100
948.3	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1041	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1143	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1255	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1377	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1512	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1660	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1822	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE E-post: lab@ngu.no

Kornfordelingsanalyser: Coulter laser partikkelteller (LABdok_K01) GEOLOGISK MATERIALE/sediment Kontraktnr.2024.0024

· NGU -

Løpenr.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
NGU prøvenr.	190572	190582	190600	190613	190615	190617	190622	190627	190637	190659					
Prøve nr. →	R3345MC14A_	R3345MC14A_	R3345MC14A_	R3365MC15A_	R3365MC15A_	R3365MC15A_	R3365MC15A_	R3365MC15A_	R3365MC15A_	R3365MC15A_					
Diameter(µm) ↓	14-15cm	24-25cm	42-43cm	0-1cm	2-3cm	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	Hynne	Minn	Tana	Hynne 2023	N-std
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0	0	0	0	0	0	0	0	0	0	0.024	0.19	0	0
0.452	0	0	0	0	0	0	0	0	0	0	0	0.066	0.53	0	0
0.490	0	0	0	0	0	0	0	0	0	0	0	0.13	1.02	0	0
0.598	0	0	0	0	0	0	0	0	0	0	0	0.33	2.56	0	0
0.656	0	0	0	0	0	0	0	0	0	0	0	0.46	3.54	0	0
0.721	0	0	0	0	0	0	0	0	0	0	0.00096	0.61	4.63	0	0
0.791	0.00031	0	0	0.00044	0.0013	0	0.00026	0.000076	0	0.00029	0.013	0.78	5.81	0.00093	0.0012
0.868	0.0074	0.00085	0.0017	0.0089	0.019	0.00072	0.0061	0.0037	0.0015	0.0059	0.076	0.96	7.07	0.013	0.017
0.953	0.057	0.015	0.025	0.065	0.12	0.012	0.048	0.035	0.021	0.044	0.24	1.16	8.36	0.08	0.1
1.047	0.23	0.098	0.15	0.25	0.41	0.081	0.2	0.17	0.13	0.17	0.57	1.37	9.67	0.27	0.34
1.149	1 3/	0.35	1 10	1 38	1 03	0.29	1 13	1.08	1.03	0.40	1.00	1.50	12.3	1 10	1/9
1.385	2.37	1.74	2.24	2.41	3.23	1.4	2	1.96	1.94	1.67	2.64	2.05	13.5	1.96	2.45
1.52	3.73	2.92	3.67	3.76	4.9	2.36	3.16	3.13	3.18	2.63	3.73	2.3	14.8	2.95	3.67
1.668	5.39	4.44	5.46	5.44	6.91	3.6	4.59	4.58	4.73	3.83	4.99	2.56	16	4.13	5.13
1.832	7.33	6.27	7.58	7.4	9.23	5.09	6.28	6.3	6.58	5.26	6.37	2.83	17.2	5.47	6.79
2.011	9.5	8.37	10	9.6	11.8	6.83	8.19	8.26	8.7	6.89	7.85	3.11	18.4	6.93	8.62
2.207	11.8	10.7	12.7	12	14.5	8.79	10.3	10.4	11	8.71	9.39	3.42	19.7	8.49	10.6
2.423	14.3	13.3	15.5	14.0	17.4	11	12.5	12.7	13.0	10.7	11	3.74	20.9	10.1	12.6
2.00	19.6	18.9	21.8	20.2	20.4	15.0	14.9	17.8	10.5	12.0	12.0	4.09	22.2	13.5	14.7
3,205	22.4	22	25.2	23.2	26.6	18.6	20.2	20.6	22.2	17.5	15.9	4.89	24.8	15.3	19.1
3.519	25.4	25.2	28.9	26.4	30	21.6	23	23.5	25.4	20.1	17.6	5.34	26.3	17.2	21.5
3.863	28.4	28.6	32.6	29.7	33.4	24.8	26	26.6	28.8	22.9	19.4	5.84	27.7	19.2	24
4.24	31.6	32.2	36.6	33.2	36.9	28.2	29.1	29.9	32.4	25.8	21.3	6.38	29.3	21.2	26.5
4.655	34.8	35.9	40.7	36.8	40.6	31.8	32.3	33.3	36.1	28.9	23.3	6.98	30.8	23.3	29.2
5.11	38.1	39.7	44.8	40.5	44.3	35.6	35.7	36.8	40	32.1	25.3	7.64	32.4	25.6	31.9
5.01	41.4	43.6	49.1	44.2	48	39.0	39.2	40.4	44	35.5	27.4	8.30	34.1	27.8	34.8
6.76	44.7	51.5	57.6	51.8	55.4	43.0	46.3	44.1	52.2	42.6	25.0	10	37.3	32.6	40.5
7.421	51.1	55.5	61.7	55.6	59.1	52	50	51.7	56.4	46.3	34.1	10.9	39	35	43.4
8.147	54.2	59.4	65.8	59.3	62.6	56.3	53.7	55.4	60.6	50	36.4	11.9	40.6	37.4	46.3
8.943	57.2	63.3	69.7	62.9	66.1	60.5	57.3	59.2	64.8	53.9	38.7	13	42.2	39.8	49.2
9.817	60.1	67.1	73.4	66.3	69.4	64.7	60.9	62.8	68.8	57.8	41	14.2	43.8	42.2	52.1
10.78	62.7	70.8	76.9	69.6	72.5	68.7	64.4	66.4	72.7	61.7	43.3	15.4	45.5	44.6	54.8
11.83	65.2	74.3	80	72.7	75.4	72.6	67.8	69.7	76.4	65.5	45.5	16.7	47.1	46.9	57.5
12.99	69.4	80.5	0Z.7 85.2	75.4	70.1 80.5	70.1	71.1	72.0	79.7 82.7	09.2 72.8	47.7	10.1	40.7	49.1	62.3
15.65	71.2	83.3	87.2	80.3	82.7	82.3	77	78.3	85.4	76.2	51.9	21.2	52.1	53.2	64.5
17.18	72.8	85.7	89	82.3	84.7	84.8	79.6	80.6	87.6	79.4	53.8	22.9	53.8	55.1	66.6
18.86	74.3	88	90.6	84.2	86.6	87	82.1	82.7	89.5	82.3	55.7	24.7	55.4	56.8	68.5
20.7	75.7	90	91.9	86	88.2	89	84.4	84.5	91.2	84.9	57.6	26.6	57.1	58.5	70.3
22.73	77	91.8	93.1	87.6	89.8	90.6	86.6	86.1	92.6	87.2	59.4	28.7	58.8	60.1	72.1
24.95	78.3	93.4	94.2	89.2	91.2	92.1	88.6	87.6	93.8	89.3	61.2	30.9	60.5	61.7	73.8
27.39	79.6	94.9	95.2	90.7	92.0	93.4	90.5	89.1	94.9	91.1	647	33.3	62.3	63.Z	75.4
30.07	00.0 82.1	90.∠ 97.2	90.1	92.1 93.3	93.0 94.9	94.0 95.6	92.1	90.4	90.9 96.8	92.7 94 1	04. <i>1</i> 66.4	38.9	04. I 65 9	04. <i>1</i> 66.1	78.5
36.24	83.3	98	97.5	94.4	95.9	96.4	94.8	92.7	97.6	95.2	68	41.9	67.7	67.6	79.8
39.78	84.5	98.5	97.9	95.3	96.6	97.1	95.8	93.7	98.2	96.1	69.5	45.2	69.5	68.9	81.1
43.67	85.6	98.8	98.3	96	97.2	97.6	96.6	94.6	98.8	96.9	70.9	48.7	71.2	70.3	82.1
47.94	86.7	99	98.6	96.6	97.7	98.1	97.2	95.3	99.2	97.5	72.3	52.3	72.9	71.6	83.1
52.62	87.8	99.1	98.8	97.1	98.1	98.4	97.7	95.9	99.6	98	73.8	56	74.7	72.9	84
57.77	88.9	99.2	99	97.6	98.5	98.7	98.1	96.5	99.8	98.4	75.2	59.9	76.5	74.3	84.9
63.41	90.1	99.3	99.2	98	98.8	99	98.5	97.1	99.9	98.8	76.7	63.8	78.3	75.7	85.7

NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE UNDUR

1	47	40	40	50	54	50	50	54		50		50	50	60	64
Løpenr.	47	48	49	50	51	52	53	54	55	56	5/	58	59	60	61
NGU prøvenr.	190572	190582	190600	190613	190615	190617	190622	190627	190637	190659					
Prøve nr. →	R3345MC14A_	R3345MC14A_	R3345MC14A_	R3365MC15A_											
Diameter(µm) ↓	14-15cm	24-25cm	42-43cm	0-1cm	2-3cm	4-5cm	9-10cm	14-15cm	24-25cm	46-47cm	Hynne	Minn	Tana	Hynne 2023	N-std
69.61	91.2	99.5	99.4	98.5	99.1	99.3	98.9	97.7	99.99	99.2	78.1	67.7	80.3	77.2	86.6
76.42	92.3	99.6	99.6	98.9	99.4	99.5	99.2	98.2	99.999	99.5	79.5	71.5	82.4	78.7	87.4
83.89	93.4	99.8	99.7	99.2	99.6	99.7	99.5	98.6	100	99.7	80.9	75.2	84.6	80.3	88.1
92.09	94.3	99.9	99.9	99.5	99.8	99.8	99.7	98.9	100	99.8	82.2	78.7	86.8	81.7	88.9
101.1	95.2	99.97	99.9	99.7	99.9	99.9	99.8	99.2	100	99.9	83.4	81.9	89.1	83.1	89.8
111	95.9	99.99	99.98	99.9	99.98	99.97	99.9	99.3	100	99.98	84.5	84.8	91.2	84.4	90.8
121.8	96.6	100	99.997	99.97	99.997	99.99	99.99	99.4	100	99.996	85.6	87.3	93.2	85.6	91.9
133.7	97.2	100	100	99.995	100	100	99.999	99.4	100	100	86.5	89.5	94.9	86.7	93.2
146.8	97.7	100	100	100	100	100	100	99.5	100	100	87.4	91.3	96.4	87.7	94.7
161.2	98.3	100	100	100	100	100	100	99.5	100	100	88.3	92.8	97.6	88.6	96.3
176.9	98.8	100	100	100	100	100	100	99.6	100	100	89	94.2	98.4	89.5	97.7
194.2	99.3	100	100	100	100	100	100	99.7	100	100	89.8	95.4	99.1	90.3	98.9
213.2	99.7	100	100	100	100	100	100	99.9	100	100	90.6	96.5	99.5	91.1	99.6
234.1	99.9	100	100	100	100	100	100	99.96	100	100	91.4	97.5	99.8	91.9	99.9
256.9	99.98	100	100	100	100	100	100	99.99	100	100	92.1	98.4	99.9	92.6	99.99
282.1	99.999	100	100	100	100	100	100	100	100	100	92.9	99.1	99.97	93.3	99.999
309.6	100	100	100	100	100	100	100	100	100	100	93.5	99.6	99.996	93.8	100
339.9	100	100	100	100	100	100	100	100	100	100	94.1	99.9	100	94.4	100
373.1	100	100	100	100	100	100	100	100	100	100	94.6	99.98	100	94.9	100
409.6	100	100	100	100	100	100	100	100	100	100	95.2	99.999	100	95.4	100
449.7	100	100	100	100	100	100	100	100	100	100	95.9	100	100	96.1	100
493.6	100	100	100	100	100	100	100	100	100	100	96.7	100	100	96.8	100
541.9	100	100	100	100	100	100	100	100	100	100	97.5	100	100	97.5	100
594.9	100	100	100	100	100	100	100	100	100	100	98.4	100	100	98.4	100
653	100	100	100	100	100	100	100	100	100	100	99.2	100	100	99.1	100
716.8	100	100	100	100	100	100	100	100	100	100	99.7	100	100	99.7	100
786.9	100	100	100	100	100	100	100	100	100	100	99.9	100	100	99.9	100
863.9	100	100	100	100	100	100	100	100	100	100	99.99	100	100	99.99	100
948.3	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1041	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1143	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1255	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1377	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1512	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1660	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
1822	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00

DLOGISKE DERSØKELSE Nov

Kornfordelingsanalyser: Coulter laser partikkelteller (LABdok_K01) GEOLOGISK MATERIALE/sediment Kontraktnr.2024.0024

File name:	24.0024_001_Hyn	ni 24.0024_002_Minr	n# 24.0024_003_Tan	a# 24.0024_004_Hyn	n 24.0024_005_Nsto	# 24.0024_006#1_04	4. 24.0024_007#1_0	4. 24.0024_008#1_0	4. 24.0024_009#1_04	4. 24.0024_010#1_04	4. 24.0024_011#1_0	4. 24.0024_012#1_0	4. 24.0024_013#1_0	5. 24.0024_014#1_04	4. 24.0024_015#1_0	4. 24.0024_016#1_0	4. 24.0024_017#1_0	4. 24.0024_018_Hyn	ni 24.0024_019_Mini	n# 24.0024_020_Tana
File ID:	24.0024_001_Hyn	nı 24.0024_002_Minr	n# 24.0024_003_Tan	a# 24.0024_004_Hyn	n 24.0024_005_Nst	# 24.0024_006#1	24.0024_007#1	24.0024_008#1	24.0024_009#1	24.0024_010#1	24.0024_011#1	24.0024_012#1	24.0024_013#1	24.0024_014#1	24.0024_015#1	24.0024_016#1	24.0024_017#1	24.0024_018_Hyn	ni 24.0024_019_Mini	n# 24.0024_020_Tana
Sample ID:	24.0024_Hynne_4	0 24.0024_Minn	24.0024_Tana_bol	ks 24.0024_2023_Hy	n 24.0024_2023_Ns	td 24.0024_190118_I	R 24.0024_190303_	R 24.0024_190169_	R 24.0024_190223_F	R 24.0024_190225_I	R 24.0024_190227_	R 24.0024_190232_	R 24.0024_190237_	R 24.0024_190247_F	R 24.0024_190269_I	R 24.0024_190274_1	R 24.0024_190348_	R 24.0024_Hynne_4	0 24.0024_Minn	24.0024_Tana_bok
Operator:	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab
Comment 1:	1438 g + disp.mid	de 0.3184g + disp.mi	id 0.1355g + disp.mi	dc 0.1455g + disp.m	id 0.1330g + disp.mi	id 0.1090g + disp.mi	d 0.1292g + disp.m	id 0.1303g + disp.mi	id 0.1220g + disp.mi	d 0.1193g + disp.mi	id 0.0968g + disp.m	id 0.0935g + disp.mi	id 0.0845g + disp.mi	id 0.0924g + disp.mi	d 0.0926g + disp.mi	d 0.3452g + disp.mi	id 0.0953g + disp.m	id 0.1399g + disp.m	id 0.3202g + disp.mi	dc 0.1372g + disp.mic
Comment 2:	vwr ultralydbad US	SC vwr Ultralydbad US	SC vwr Ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	C vwr Ultralydbad US	S(vwr Ultralydbad US						
Instrument:	LS 13 320, Aqueo	us LS 13 320, Aqueou	ut LS 13 320, Aqueor	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueou	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	u: LS 13 320, Aqueou	us LS 13 320, Aqueou	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueou	ut LS 13 320, Aqueor	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueo	ut LS 13 320, Aqueou
Run number:	4	4	4	4	4	4	4	4	4	4	4	4	5	4	4	4	4	4	4	4
Start time:	08.07.2024 09:12	08.07.2024 09:30	08.07.2024 13:47	08.07.2024 14:13	08.07.2024 14:35	08.07.2024 09:48	08.07.2024 10:01	08.07.2024 10:12	08.07.2024 10:26	08.07.2024 10:39	08.07.2024 11:14	08.07.2024 11:34	08.07.2024 12:12	08.07.2024 12:27	08.07.2024 12:38	08.07.2024 13:08	08.07.2024 13:21	09.07.2024 08:45	09.07.2024 08:20	09.07.2024 14:04
Run length:	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	61	60
Optical model:	Leire-1-65.rf780d	Fraunhofer.rf780d	Fraunhofer.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Leire-1-65.rf780d	Fraunhofer.rf780d	Fraunhofer.rf780d
PIDS Obscur:	10	10	8	9	11	10	10	9	11	12	11	11	12	9	10	8	11	9	10	10
Obscuration:	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
Serial Number:	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666
_	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075
From	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375
Volume	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Mean:	70.14	70.98	38	85.28	27.6	27.85	72.58	44.43	36.52	30.31	7.702	11.85	12.65	37.02	17.34	85.9	18.07	71.72	72.69	36.87
Median:	13.4	44.33	15.71	18.34	8.774	7.272	14.31	10.16	14.25	7.497	4.991	5.671	5.585	9.677	5.536	97.19	10.12	16.06	46.96	15.24
D(3,2):	6.631	12.93	3.787	7.434	5.473	5.057	6.35	5.752	6.281	5.006	3.956	4.225	4.357	5.47	4.226	14.02	6.283	6.989	13.56	3.716
Mode:	7.083	60.53	2.410	4.031	7.083	4.877	127.6	4.373	2.565	4.877	5.354	4.877	5.354	4.877	4.443	140.1	8.536	9.37	66.45	2.419
S.D.:	141.5	99.78	47.54	156.5	45.19	45.71	116.9	57.26	44.67	46.13	9.96	17.6	24.76	52.17	30.43	68.21	24.35	135	98.3	46.61
Variance:	20010	9957	2261	24480	2042	2089	13676	3279	1995	2128	99.21	309.8	613.1	2722	926	4652	593	18223	9663	2173
C.V.:	201.7	140.6	125.1	183.5	163.7	164.1	161.1	128.9	122.3	152.2	129.3	148.5	195.7	140.9	175.5	79.41	134.7	188.2	135.2	126.4
Skewness:	3.08	4.287	1.595	2.686	2.426	2.664	2.863	1.321	1.687	2.173	4.867	3.293	4.977	1.864	3.17	0.154	4.163	2.934	4.355	1.663
d10:	2.341	6.673	1.142	2.524	2.137	2.031	2.168	2.079	2.188	4.035	1.918	1.876	2.026	2.900	1.847	4.712	24.48	2.393	7.078	1.12
d50:	13.4	44.33	15.71	18.34	8.774	7.272	14.31	10.16	14.25	7.497	4.991	5.671	5.585	9.677	5.536	97.19	10.12	16.06	46.96	15.24
d90:	202.1	146.1	110.2	249.7	95.42	87.5	182.6	136.4	99.6	96.47	14.12	27.7	24.61	114.4	53.98	174.2	39.41	205.3	153.1	106.9
Specific Surf. Area:	9049	4641	15842	8071	10963	11865	9449	10430	9552	11987	15168	14201	13770	10969	14196	4280	9549	8585	4426	16146
8/ -	Cine	Size	Size	Size	Size	Size	Cine	Size	Size	Cine	Size	Size	Cine	Size	Cine	Cine	Size	Cine	Size	Size
10	2.34	6.67	1.14	2.52	2.14	2.03	2.17	2.08	2.19	1.95	1.92	1.88	2.03	2	1.85	4.71	2.57	2.39	7.08	1.12
25	4.82	18.8	3.57	5.91	3.94	3.42	4.18	3.81	4.29	3.33	2.9	2.97	3.16	3.64	2.89	12.2	4.66	5.45	19.9	3.47
50	13.4	44.3	15.7	18.3	8.77	7.27	14.3	10.2	14.2	7.5	4.99	5.67	5.58	9.68	5.54	97.2	10.1	16.1	47	15.2
75	57.2	83.6	58.6	79.9	23.9	29.3	106	81.4	57.1	38.5	8.58	11.7	10.1	53.4	13.2	143	22.7	66.5	87.8	56
	202	146	110	250	95.4	87.5	183	136	99.6	96.5	14.1	27.7	24.6	114	54	1/4	39.4	205	153	107
Particle Diameter	24.0024_001_Hyn	ni 24.0024_002_Minr	n# 24.0024_003_Tan	a# 24.0024_004_Hyn	n 24.0024_005_Nst	# 24.0024_006#1_0	4. 24.0024_007#1_0	4. 24.0024_008#1_0	4. 24.0024_009#1_04	4. 24.0024_010#1_0	4. 24.0024_011#1_0	4. 24.0024_012#1_0	4. 24.0024_013#1_0	5. 24.0024_014#1_04	4. 24.0024_015#1_0	4. 24.0024_016#1_0	4. 24.0024_017#1_0	4. 24.0024_018_Hyn	ni 24.0024_019_Mini	n# 24.0024_Tana_039
um	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume
% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <
2	7.23	3.14	17.2	5.69	8.62	9.61	8.32	9.14	8.19	10.7	11.3	11.9	9.63	10	12.4	2.11	5.46	7.26	2.95	17.5
10	43.2	14.6	42.1	36.9	54.1	59	44.8	49.7	44.1	57.1	80.8	70.4	74.7	50.7	69.2	21.5	49.6	39.1	13.8	42.6
15	52.4	20.7	49.2	46	65.3	66.9	50.5	56	50.7	64.1	91	80.7	85	57.4	76.9	28.5	62.5	48.5	19.7	49.7
16	53.7	21.9	50.3	47.3	66.8	67.8	51.2	56.7	51.6	64.9	91.9	81.9	85.9	58.3	77.7	29.5	64.5	49.9	20.9	50.9
20	58	26.3	54.4	51.6	71.6	70.6	53.3	59	54.6	67.4	94.2	85.7	88.3	61.1	80.3	32.6	71.2	54.5	25.1	54.9
25	73	54.6	71.9	55.7	75.6 85	814	61.2	67.7	71.5	78.5	93.6	95.2	90.1	73.9	89.3	41.2	93.9	70.3	52.4	72.8
60	75.7	62	75.5	70	86.4	83.8	63.3	69.6	76.4	81.3	99	96.3	95.4	77	91	42.9	95.7	73.2	59.7	76.4
63	76.4	64	76.5	70.8	86.8	84.6	64	70.3	77.8	82.2	99.2	96.6	95.7	77.9	91.5	43.3	96.1	74.1	61.8	77.4
70	78	68.2	78.7	72.7	87.6	86.2	65.6	71.9	80.8	84.1	99.4	97.2	96.3	79.9	92.7	44.3	96.8	75.9	66.1	79.8
75	79.1	70.9	80.3	73.9	88.1	87.4	66.8 70.6	73.2	82.7	85.4	99.5 00.8	97.6	96.7	81.4	93.5 95.6	45	97.1	77.1	68.9 75.0	81.4
125	85.8	87	04.9 92.8	82.3	92.7	95.2	79.9	87.4	94.3	94	aa.o 99.996	99.9	98.7	91.5	98.1	~/.o 63.8	98.9	84.9	, 5.9 85.9	93.3
180	89	93	98.3	86.7	98	97.7	89.7	96.7	98.5	98	100	100	99.5	96.7	99.5	91.9	99.5	88.9	92.5	98.3
200	89.9	94.2	99.1	87.8	99.2	98.3	91.6	98.3	99.2	98.8	100	100	99.7	98.1	99.8	96.5	99.7	89.8	93.9	99.2
250	91.8	96.2	99.9	90	99.97	99.5	94.2	99.9	99.9	99.8	100	100	99.96	99.8	99.99	99.8	99.98	91.5	96.4	99.9
400	94.6	98	100	93	100	100	96.4	100	100	100	100	100	100	100	100	100	100	94.8	98.3	100
1000	100	99.99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.99	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Kornfordelingsanalyser: Coulter laser partikkelteller (LABdok_K04) GEOLOGISK MATERIALE/sediment Kontraktnr.2024.0024

File name:	24.0024_021_Hyr	nn 24.0024_022_Nst	d# 24.0024_023#1_04	4. 24.0024_024#1_0	4. 24.0024_025#1_0	4. 24.0024_026#1_0	4. 24.0024_027#1_0	4. 24.0024_028#1_0	4. 24.0024_029#1_04	. 24.0024_030#1_0	4. 24.0024_031#1_0	4. 24.0024_032#1_0	4. 24.0024_033#1_0	4. 24.0024_034#1_04	4. 24.0024_035#1_0	4. 24.0024_036#1_0	4. 24.0024_037_Hyn	ını 24.0024_038_Min	n# 24.0024_039_Tan	a# 24.0024_040_Hynn
File ID:	24.0024_021_Hyr	nni 24.0024_022_Nst	d# 24.0024_023#1	24.0024_024#1	24.0024_025#1	24.0024_026#1	24.0024_027#1	24.0024_028#1	24.0024_029#1	24.0024_030#1	24.0024_031#1	24.0024_032#1	24.0024_033#1	24.0024_034#1	24.0024_035#1	24.0024_036#1	24.0024_037_Hyn	ini 24.0024_038_Min	n# 24.0024_039_Tan	a# 24.0024_040_Hynn
Sample ID:	24.0024_Hynne20	02: 24.0024_Nstd_spl	itt 24.0024_190406_F	R 24.0024_190408_	R 24.0024_190410_	R 24.0024_190415_	R 24.0024_190420_	R 24.0024_190430_	R 24.0024_190452_F	R 24.0024_190456_	R 24.0024_190458_	R 24.0024_190460_	R 24.0024_190465_	R 24.0024_190470_I	R 24.0024_190480_	R 24.0024_190502_	R 24.0024_Hynne_4	0 24.0024_Minn	24.0024_Tana_bo	ks 24.0024_Hynne202
Operator:	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab
Comment 1:	0.1404g + disp.m	iid 0.1320g + disp.m	id 0.0850g + disp.mi	id 0.0910g + disp.m	id 0.0924g + disp.m	id 0.0964g + disp.m	id 0.0871g + disp.m	id 0.0941g + disp.mi	id 0.0764g + disp.mi	d 0.0760g + disp.m	id 0.0915g + disp.m	id 0.0980g + disp.m	id 0.0913g + disp.m	id 0.0927g + disp.mi	d 0.0959g + disp.m	id 0.0930g + disp.mi	id 0.1500g + disp.m	id 0.3237g + disp.mi	dc 0.1395g + disp.m	id 0.1360 g + disp.mid
Comment 2:	vwr ultralydbad U	SC vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	SC vwr Ultralydbad U	SC vwr Ultralydbad US	S(vwr ultralydbad US(
Instrument:	LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueou	us LS 13 320, Aqueo	u: LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueor	ut LS 13 320, Aqueou	IS LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueou	18 LS 13 320, Aqueo	us LS 13 320, Aqueor	u: LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueou
Run number:	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4
Start time:	09.07.2024 14:17	09.07.2024 14:30	09.07.2024 09:31	09.07.2024 09:42	09.07.2024 09:55	09.07.2024 10:07	09.07.2024 10:28	09.07.2024 10:41	09.07.2024 11:09	09.07.2024 12:17	09.07.2024 12:30	09.07.2024 12:44	09.07.2024 12:56	09.07.2024 13:11	09.07.2024 13:25	09.07.2024 13:37	10.07.2024 09:31	10.07.2024 09:12	10.07.2024 11:52	10.07.2024 12:05
Run length:	60	60	60	60	61	62	60	61	61	61	60	60 Leize 1 65 d780d	60	60	61	60	61	60 Freunhafer d780d	60 Essue hafes af 780d	60 Leise 1 65 d780d
Obscuration:	10	11	12	10	11	11	11	11	9	9	10	11	11	9	11	12	9	10	9	9
PIDS Obscur:																				
Obscuration:	ок	OK	ОК	ок	ок	OK	ок	ок	ОК	OK	ок	ок	ок	ок	ок	ок	ок	OK	ок	ОК
Serial Number:	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666
From	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375
То	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Volume	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Mean:	71.11	35.78	7.893	41.56	38.87	26.16	20.55	39.55	27.65	18.03	33.25	25.85	21.9	50.26	23.2	10.76	37.26	60.28	35.54	71.56
Median: D(3.2):	13.62	11.12 6.016	5.178	7 794	10.11	8.701 5.612	7.319	10.61 6.228	7.519	5 708	13.61	9.39	9.029	19.42	5,609	6.675	13.03	45.3	14.54 3.659	15.46
Mean/Median ratio:	5.222	3.217	1.524	2.201	3.843	3.006	2.808	3.729	3.678	2.056	2.443	2.753	2.426	2.588	2.71	1.612	2.859	1.331	2.445	4.628
Mode:	7.083	7.083	5.354	80.07	5.878	5.354	5.878	5.878	5.354	7.083	6.452	7.083	6.452	8.536	6.452	7.083	10.29	60.53	87.9	8.536
S.D.:	139.4	51.55	8.74	48.84	56.57	39.64	35.05	62.04	48.5	23.27	43.93	38.92	31.05	63.24	38.89	12.14	55.86	56.12	44.71	133.7
Variance:	19442	2657	76.39	2386	3200	1571	1228	3849	2352	541.6	1930	1515	964.2	3999	1512	147.3	3120	3149	1999	17878
C.V.: Skewness:	2 988	144.1	3 492	1.587	140.0	2 696	3.321	2 302	2 877	2 701	2 189	2 552	2 656	123.8	3 301	2 951	2 446	1 71	125.8	2 984
Kurtosis:	8.894	2.467	16.79	2.213	3.108	8.143	12.46	4.971	8.5	10.19	5.182	6.799	8.147	1.766	12.06	11.56	6.099	3.499	2.01	9.202
d10:	2.329	2.196	1.91	2.732	2.366	2.201	2.173	2.334	2.047	2.333	2.519	2.416	2.361	2.797	2.266	2.1	2.239	6.896	1.107	2.399
d50:	13.62	11.12	5.178	18.88	10.11	8.701	7.319	10.61	7.519	8.766	13.61	9.39	9.029	19.42	8.56	6.675	13.03	45.3	14.54	15.46
d90: Sacrifia Surf. Areau	210.5	127.2	16.3	113.6	127.8	71.94	54.59	126.8	80.45	48.51	90.55	77.07	61.49	152.9	58.97	24.44	105.8	132.5	104.9	207.8
Specific Suri. Area.	9039	9974	14000	7096	9028	10091	11575	9034	11/0/	10512	6/12	9913	10235	7440	10097	12393	9502	4300	10390	0020
% <	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size
10	2.33	2.2	1.91	2.73	2.37	2.2	2.17	2.33	2.05	2.33	2.52	2.42	2.36	2.8	2.27	2.1	2.24	6.9	1.11	2.4
25	4.78	4.37	2.93	5.67	4.29	3.86	3.64	4.28	3.49	4.11	4.96	4.31	4.17	6	4	3.48	4.85	19.5	3.37	5.21
50	13.6	11.1	5.18	18.9	10.1	8.7	1.32	10.6	7.52	8.//	13.6	9.39	9.03	19.4	8.56	6.67	13	45.3	14.5	15.5
90	210	127	16.3	114	128	71.9	54.6	127	80.5	48.5	90.5	77.1	61.5	153	59	24.4	106	133	105	208
INTERPOLASJON																				
Particle Diameter	24.0024_021_Hyr	nn 24.0024_022_Nst	d# 24.0024_023#1_04	4. 24.0024_024#1_0	4. 24.0024_025#1_0	4. 24.0024_026#1_0	4. 24.0024_027#1_0	4. 24.0024_028#1_0	4. 24.0024_029#1_04	. 24.0024_030#1_0	4. 24.0024_031#1_0	4. 24.0024_032#1_0	4. 24.0024_033#1_0	4. 24.0024_034#1_04	4. 24.0024_035#1_0	4. 24.0024_036#1_0	4. 24.0024_037_Hyn	ini 24.0024_038_Min	n# 24.0024_039_Tan	a# 24.0024_040_Hynn
um X	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume
2	7 27	8 23	11.4	51	6.64	7.86	8.04	6.88	9 44	6.82	5.98	6 23	²⁰ 5 6 6	4.93	7.36	8.81	81	3.07	17.8	7.03
5	26.1	28.5	48.4	22.1	29.5	33	36.1	29.4	36.7	31.1	25.2	29.5	30.7	21.1	32.1	38.4	25.7	7.36	31.3	24.1
10	43	47.2	77.8	37.9	49.7	53.8	60.4	48.6	58.2	54.4	42.9	52	53.2	36.4	54.9	66.1	43.1	14.1	43.4	40.3
15	52	57.2	88.5	46	58.5	62.6	70.8	57.1	66.9	66.6	52.1	63.4	64.3	45.1	66	79.4	53.4	20.1	50.5	49.4
16	53.3	58.6	89.7	47.1	59.7	63.7	72.1	58.2	68	68.3	53.4	65	65.9	46.3	67.5	81.2	54.9	21.2	51.7	50.7
25	61.4	67.4	95.4	54.8	66	70.8	79.7	65.4	74.8	78.2	62.3	73.8	75.1	54.7	76.6	90.4	64.6	30.6	59.9	59
50	72.1	78.2	99.1	68.8	74.7	83.5	89.1	77.3	84.2	90.5	77.3	84	86.9	67.7	88.1	97.9	77.4	54	73.5	69.9
60	74.8	80.3	99.5	73.3	77.1	86.9	90.9	80.1	86.5	93.3	81.4	86.4	89.6	71.2	90.2	98.7	80.5	61.7	77.1	72.6
63	75.5	80.9	99.6	74.5	77.9	87.8	91.4	80.8	87.1	94	82.5	87.1	90.4	72.1	90.7	98.9	81.3	63.8	78.2	73.4
70	79.1	82.1	99.8	70.2	79.5	89.6	92.4	82.3	88.4	95.3	84.8	88.6	91.8	75.4	91.8	99.2	83.2	68.4	80.5	75.1
90	80.7	84.9	99.997	84.1	83.8	93	94.6	85.7	91.2	97.8	89.9	92.2	95	78.9	94.1	99.9	87.5	78.5	86.4	79.3
125	85	89.7	100	92.1	89.6	95.9	96.9	89.8	94	99.5	94.6	95.8	97.9	85.6	96.2	100	92.2	88.6	93.7	84.2
180	88.5	97.3	100	97.8	95.7	98.4	98.9	94	96.7	99.9	98	98.8	99.6	93.6	98.1	100	95.4	95.1	98.9	88.5
200	89.5	98.8	100	98.8	97.2	99.1	99.4	95.4	97.6	99.9	98.8	99.4	99.9	95.7	98.8	100	96.4	96.4	99.6	89.6
200 400	91.0 94.7	ฮช.ช 100	100	ษษ.ษ 100	ଟଟ.4 100	99.9 100	ษษ.ษ 100	98.1 99.998	99.4 100	ษษ.ษษ 100	ອອ.ອ 100	ษษ.ษ <i>า</i> 100	99.990 100	98.9 100	ະ ນ .ອ 100	100	98.7 100	98.0 99.997	ษษ.ษษ 100	91.8 95.3
500	96.2	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	96.7
1000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Komfordelingsanalyser: Coulter laser partikkelteller (LABdok_K01) GEOLOGISK MATERIALE/sediment Kontraktnr.2024.0024

File name:	24.0024_041_Nsl	td# 24.0024_042#1_0	14. 24.0024_043#1_0	4. 24.0024_044#1_0	4. 24.0024_045#1_0	14. 24.0024_046#1_0	4. 24.0024_047#1_0	4. 24.0024_048#1_0	4. 24.0024_049#1_04	4. 24.0024_050#1_0	4. 24.0024_051#1_0	4. 24.0024_052#1_0	4. 24.0024_053#1_0	4. 24.0024_054#1_0	4. 24.0024_055#1_0	4. 24.0024_056#1_0	14. 24.0024_057_Hyr	ını 24.0024_058_Min	n# 24.0024_059_Tan	al 24.0024_060_Hynn
File ID:	24.0024_041_Nst	td# 24.0024_042#1	24.0024_043#1	24.0024_044#1	24.0024_045#1	24.0024_046#1	24.0024_047#1	24.0024_048#1	24.0024_049#1	24.0024_050#1	24.0024_051#1	24.0024_052#1	24.0024_053#1	24.0024_054#1	24.0024_055#1	24.0024_056#1	24.0024_057_Hyr	ını 24.0024_058_Min	n# 24.0024_059_Tan	a# 24.0024_060_Hynn
Sample ID:	24.0024_Nstd_sp	litt 24.0024_190508_	R 24.0024_190558_	R 24.0024_190560_	R 24.0024_190562_	R 24.0024_190567_	R 24.0024_190572_	R 24.0024_190582_	R 24.0024_190600_F	R 24.0024_190613_	R 24.0024_190615_	R 24.0024_190617_	R 24.0024_190622_	R 24.0024_190627_	R 24.0024_190637_	R 24.0024_190659_	R 24.0024_Hynne_4	0 24.0024_Minn	24.0024_Tana_bo	ks 24.0024_Hynne202
Operator:	geolab	geolab	geolab	geolap	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolab	geolap	geolab	geolab	geolab	geolab
Comment 1:	0.1367 g + disp.n	nid 0.0808g + disp.m	nid 0.0840g + disp.m	id 0.0848g + disp.m	id 0.0839g + disp.m	iid 0.0866 g + disp.m	id 0.0849 g + disp.m	id 0.0890 g + disp.m	id 0.0844 g + disp.mi	d 0.0935g + disp.m	id 0.0985g + disp.m	id 0.0952g + disp.m	id 0.0985g + disp.m	id 0.0992g + disp.m	id 0.0898g + disp.m	id 0.0830g + disp.m	id 0.1425g + disp.m	id 0.3202g + disp.mi	dc 0.1401g + disp.m	id 0.1452g + disp.mid
Comment 2:	vwr ultralydbad U	SC vwr ultralydbad U	SC vwr ultralydbad US	C vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	C vwr ultralydbad US	SC vwr ultralydbad US	SC vwr ultralydbad US	SC vwr Ultralydbad U	S(vwr Ultralydbad U	S(vwr ultralydbad US(
Instrument:	LS 13 320, Aqueo	bus LS 13 320, Aqueo	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueo	u: LS 13 320, Aqueo	u: LS 13 320, Aqueo	u: LS 13 320, Aqueou	18 LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueo	ut LS 13 320, Aqueo	us LS 13 320, Aqueo	us LS 13 320, Aqueo	ut LS 13 320, Aqueou
Run number:	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	8
Start time:	10.07.2024 12:15	10.07.2024 09:51	10.07.2024 10:16	10.07.2024 10:29	10.07.2024 10:40	10.07.2024 11:02	10.07.2024 11:15	10.07.2024 11:28	10.07.2024 11:39	11.07.2024 08:24	11.07.2024 08:37	11.07.2024 08:54	11.07.2024 09:05	11.07.2024 09:25	11.07.2024 10:30	11.07.2024 10:53	11.07.2024 08:11	11.07.2024 07:46	11.07.2024 11:36	11.07.2024 11:12
Run length:	60	61	61	60	61	60	66	60	60	61	60	60	61	60	60	60	60	60	60	60
Optical model: Obscuration:	12	12	12	12	11	10	Leire-1-65.07/80d	Leire-1-65.07/80d	Leire-1-65.07800	11	12	12	12	12	12	10	11	Fraunnoler.m/80d	Fraunnoter.m/80d	Leire-1-65.07/800
PIDS Obscur:																				
Obscuration:	ОК	ок	OK	OK	ок	OK	ок	ок	ок	OK	ок	OK	ок	OK	ок	OK	OK	OK	ок	ок
Serial Number:	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666	9666
From	0.375	0.375	0.375	0.375	0.375	0 375	0.375	0.375	0.375	0 375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375
То	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Volume	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Mean:	29.36	8.638	8.419	8.259	13.07	18.1	21.58	9.637	8.853	11.43	10.09	10.55	11.93	13.3	9.194	12.05	67.47	61.67	35.66	66.65
Median:	9.436	5.822	6.209	5.353	7.331	7.018	7.185	6.532	5.73	6.473	5.904	7.106	7.422	7.132	6.439	8.138	14.38	45.26	13.94	13.52
D(3,2). Mean/Median ratio:	3 111	4.422	4.602	4.131	1 783	4.959	4.967	4.75	4.334	4.048	4.207	1 485	1.608	1.866	4.072	1 481	4 693	1362	2 558	4 929
Mode:	7.083	5.878	7.083	5.354	5.878	5.354	5.354	7.083	5.878	5.878	5.878	7.775	7.775	7.083	7.083	10.29	8.536	60.53	87.9	8.536
S.D.:	45.86	9.436	7.229	9.366	15.1	29.29	35.92	10.03	10.42	14.61	12.4	11.5	13.5	20.52	8.838	12.59	131.5	59.11	46.05	129.9
Variance:	2104	89.04	52.26	87.72	227.9	858.2	1290	100.6	108.5	213.4	153.7	132.3	182.2	421.1	78.11	158.5	17279	3494	2120	16871
C.V.:	156.2	109.2	85.86	113.4	115.5	161.9	166.5	104.1	117.7	127.8	122.8	109	113.1	154.2	96.13	104.5	194.8	95.85	129.1	194.9
Kurtosis:	4.245	23.7	5.731	21.04	7.682	14.03	10.13	19.08	22.59	13.88	14.54	3.432	2.996	39.02	2.433	2.837	9.164	3.614	2.879	9.792
d10:	2.127	2.065	2.133	1.94	2.132	2.082	2.053	2.147	2.011	2.043	1.886	2.328	2.18	2.17	2.12	2.349	2.291	6.759	1.073	2.409
d50:	9.436	5.822	6.209	5.353	7.331	7.018	7.185	6.532	5.73	6.473	5.904	7.106	7.422	7.132	6.439	8.138	14.38	45.26	13.94	13.52
d90:	103.8	17.82	17.4	17.36	31.98	48.42	63.1	20.73	18.25	26.24	23.07	21.95	26.78	29.29	19.37	25.91	198.9	137.7	105.4	188.2
Specific Surf. Area:	10744	13570	13039	14524	11919	12099	12031	12631	13845	12908	14063	11696	11828	11990	12842	11029	9054	4599	16851	8829
%<	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size	Size
10	2.13	2.06	2.13	1.94	2.13	2.08	2.05	2.15	2.01	2.04	1.89	2.33	2.18	2.17	2.12	2.35	2.29	6.76	1.07	2.41
25	4.03	3.26	3.43	3	3.61	3.49	3.48	3.5	3.18	3.38	3.06	3.88	3.75	3.69	3.48	4.14	5.04	19.2	3.24	5
50	9.44	5.82	6.21	5.35	7.33	7.02	7.19	6.53	5.73	6.47	5.9	7.11	7.42	7.13	6.44	8.14	14.4	45.3	13.9	13.5
90	27.6	10.4	10.9	9.05	32	48.4	19.8	12.1	10.3	12.8	23.1	12.6	14.7 26.8	29.3	11.4	25.9	57	138	53.6 105	188
INTERPOLASJON																				
Particle Diameter	24.0024_041_Nst	td# 24.0024_042#1_0	4. 24.0024_043#1_0	4. 24.0024_044#1_0	4. 24.0024_045#1_0	4. 24.0024_046#1_0	4. 24.0024_047#1_0	4. 24.0024_048#1_0	4. 24.0024_049#1_04	4. 24.0024_050#1_0	4. 24.0024_051#1_0	4. 24.0024_052#1_0	4. 24.0024_053#1_0	4. 24.0024_054#1_0	4. 24.0024_055#1_0	4. 24.0024_056#1_0	4. 24.0024_057_Hyr	ini 24.0024_058_Min	n# 24.0024_059_Tan	a# 24.0024_060_Hynn
um	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume	Volume
% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% <	% < 11.6	% <	% <	% <	% <	% <	% <	% <	% < 18.4	% <
5	31	43.1	40.3	46.9	36.2	37.6	37.3	38.8	43.8	39.6	43.4	34.7	34.9	35.9	39	31.3	24.8	7.48	32	25
10	51.7	73.4	71.3	76.3	60.7	61.9	60.6	67.8	74.1	67	70	65.5	61.6	63.5	69.5	58.5	41.4	14.4	44.1	42.7
15	62.6	86.2	86	87.3	72.8	72.2	70.3	82	86.3	79.2	81.7	80.9	75.6	77.1	84.2	74.7	50.9	20.5	51.3	52.3
16	64.2	87.8	87.9	88.6	74.5	73.5	71.6	83.8	87.6	80.7	83.2	82.9	77.6	78.8	85.9	77	52.3	21.6	52.5	53.6
20	73.3	92 95.1	92.9	92.1	79.8 84.9	80.7	75.2	89.2 93.5	91.4	85.3	87.6 91.3	88.2 92.2	83.5	83.8	90.6	83.9	61.3	25.9	50.5 60.5	57.9 61.7
50	83.3	99	99.9	99	96.3	90.4	87.2	99.1	98.7	96.8	97.9	98.2	97.4	95.6	99.4	97.7	73	53.9	73.7	72.2
60	85	99.3	99.997	99.4	97.7	92.5	89.4	99.3	99.1	97.8	98.6	98.9	98.3	96.8	99.9	98.6	75.8	61.4	77.2	74.9
63	85.5	99.4	99.999	99.5	98	93.1	90	99.3	99.2	98	98.8	99	98.5	97.1	99.9	98.8	76.6	63.5	78.2	75.6
70	86.4	99.6	100	99.7	98.6	94.1	91.3	99.5	99.4	98.5	99.1	99.3	98.9	97.7	99.99	99.2	78.2	67.9	80.4	77.3
90	88.6	99.9 99.9	100	39.9 99.9	99.6	96.3	94.1	99.9	99.8	99.4	99.8	39.0 99.8	99.6	98.8	aa.aan 100	39.4 99.8	79.0 81.9	77.8	02 86.2	70.4 81.4
125	92.3	99.999	100	99.999	99.997	98.2	96.8	100	99.998	99.98	99.998	99.995	99.99	99.4	100	99.997	85.8	87.9	93.7	85.9
180	98.1	100	100	100	100	99.4	98.9	100	100	100	100	100	100	99.6	100	100	89.2	94.4	98.6	89.6
200	99.2	100	100	100	100	99.7	99.4	100	100	100	100	100	100	99.8	100	100	90	95.7	99.2	90.5
250	99.98	100	100	100	100	99.99	99.95 100	100	100	100	100	100	100	99.98 100	100	100	91.9 95.1	98.2 99 99	99.9 100	92.4
500	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	96.8	100	100	96.9
1000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Kornfordelingsanalyser: Coulter laser partikkelteller (LABdok_K01) GEOLOGISK MATERIALE/sediment Kontraktnr.2024.0024

File name:	24.0024_061_Nstd#1_04.\$ls
File ID:	24.0024_061_Nstd#1
Sample ID:	24.0024_Nstd_splitt5
Operator:	geolab
Comment 1:	0.1350g + disp.middel, springvann
Comment 2:	vwr ultralydbad USCt300, 5min
Instrument:	LS 13 320, Aqueous Liquid Module
Run number:	4
Start time:	11.07.2024 11:25
Run length:	60
Optical model:	Leire-1-65.07800
DIDE Observer	12
Obscuration:	OK
Serial Number:	9666
ochar Hamber.	0000
From	0.375
То	2000
Volume	100
Mean:	29.18
Median:	9.18
D(3,2):	5.588
Mean/Median ratio:	3.179
Mode:	7.083
S.D.:	46.35
Variance:	2148
C.V.:	158.8
Skewness:	2.301
Kurtosis:	4.555
d10:	2.15
150	
d50:	9.18
d50: d90: Specific Surf. Area:	9.18 103.3 10737
d50: d90: Specific Surf. Area:	9.18 103.3 10737
d50: d90: Specific Surf. Area: % <	9.18 103.3 10737 Size
d50: d90: Specific Surf. Area: % < 10	9.18 103.3 10737 Size 2.15
d50: d90: Specific Surf. Area: % < 10 25	9.18 103.3 10737 Size 2.15 4.01
d50: d90: Specific Surf. Area: % < 10 25 50	9.18 103.3 10737 Size 2.15 4.01 9.18
d50: d90: Specific Surf. Area: % < 10 25 50 75	9.18 103.3 10737 Size 2.15 4.01 9.18 26.8
d50: d90: Specific Surf. Area: % < 10 25 50 75 90	9.18 100.3 10737 2.15 4.01 9.18 26.8 103
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON	9.18 100.3 10737 2.15 4.01 9.18 26.6 103
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter	0.18 100.3 10737 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$Is
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um	9.18 100.3 10737 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$ts Volume
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2	9.18 100.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Natd#1_04.\$is Volume % < 9.51
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um w, < 2 5	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$Is Volume % < 8.51 113
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10	9.18 100.3 10737 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15	9.18 100.3 100.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Natd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 NTERPOLASJON Particle Diameter um % < 2 5 10 13 15 16	9.18 103.3 107.37 Size 2.15 4.01 9.18 28.8 103 24.0224_061_Nstd#1_04.\$is Volume %i < 4 8.51 31.3 52.8 63.5 65
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20	9.18 100.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 5.26 63.5 65 69.6
d50: d90: : Specific Surf. Area: % < 10 25 50 10 25 50 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 25 26 26 26 26 26 26 26 26 26 26	9.18 100.3 100.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65 69.6 73.8
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 16 20 25 50 10 25 50 10 10 10 10 10 10 10 10 10 1	9.18 103.3 107.37 Size 2.15 4.01 9.18 28.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65 69.6 73.8 8.35
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 60	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$Is Volume % < 8.51 31.3 5.2 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5
d50: d90: . \$pecific Surf. Area: % < 1 10 25 50 10 25 50 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 22 5 60 63	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65 69.6 73.8 83.5 85.7
d50: d90: J90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um NTERPOLASJON Particle Diameter 25 5 10 15 16 20 25 50 60 60 63 70	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nsid#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65.6 69.6 73.8 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 10 25 50 60 63 50 75	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$Is Volume % < 0.51 31.3 62.6 63.5 65.6 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 65.5 69.6 73.8 83.5 65.5
d50: d90: J90: Specific Surf. Area: % < 1 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 60 63 70 75 90	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65 69.6 73.8 83.5 65 85.7 86.6 87.2 88.7
d50: d90: J0 25 50 75 90 INTERPOLASJON Particle Diameter um W< 4 2 5 10 15 16 20 25 5 10 15 16 20 25 50 60 63 70 75 90 125 5 10 10 10 10 10 10 10 10 10 10	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nsid#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65.6 69.6 73.8 85.7 86.6 85.7 86.6 87.7 88.7 87.7 88.7 87.7 88.7 87.7 88.7 87.7
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 16 20 25 50 16 20 25 50 16 20 25 50 10 15 16 20 25 50 10 15 16 20 25 50 17 10 10 10 10 10 10 10 10 10 10	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_NstdW1_04.\$Is Volume % < 8.51 31.3 62.6 63.5 65.6 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 69.6 85.7 86.6 87.2 88.7 22.2 27.9 86.7 87.9 87.2 88.7 95.6 85.7
d50: d90: bpecific Surf. Area: % < 1 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 2 5 10 15 16 20 25 50 60 63 70 75 90 125 50 125 180 20 225 180 20 235 24 25 25 25 25 25 25 25 25 25 25	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nstd#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 65 66.6 73.8 83.5 85.7 86.6 85.7 86.6 87.2 88.7 92.2 97.9 99.1
d50: d90: J90: Specific Surf. Area: % < 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 60 60 63 70 75 90 125 180 190 125 180 190 125 190 191 191 191 191 191 191 191	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_Nsid#1_04.\$is Volume % < 8.51 31.3 52.6 63.5 63.5 63.6 63.5 63.5 65.6 63.6 63.5 65.7 85.7 86.6 87.2 86.5 87.2 86.7 87.3 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.6 87.7 86.7 87.7 86.6 87.7 86.6 87.7 86.7 87.7 86.6 87.7 86.6 87.7 86.7 87.7 86.6 87.7 86.6 87.7 86.7 87.7 86.6 87.7 86.6 87.7 86.7 87.7 86.6 87.7 86.7 87.7 86.6 87.7 87.7 86.6 87.7 87.7 86.6 87.7 87.7 86.6 87.7
d50: d90: Specific Surf. Area: % < 10 25 50 75 90 NTTERPOLASJON Particle Diameter um % < 2 5 10 15 16 20 25 50 60 63 63 70 75 90 125 50 60 63 63 70 75 90 125 50 60 63 60 63 60 63 60 63 60 63 60 75 90 90 90 90 90 90 90 90 90 90	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024_061_NstdW1_04.\$Is Volume % < 0.51 31.3 62.6 63.5 65.6 69.6 73.8 83.5 65.5 69.6 73.8 83.5 65.5 85.7 86.6 85.7 86.6 85.7 86.7 87.2 88.7 99.1 99.86 100 100 100 100 100 100 100 10
d50: d90: bpecific Surf. Area: % < 1 10 25 50 75 90 INTERPOLASJON Particle Diameter um % < 2 2 5 10 15 16 20 25 50 60 63 70 75 90 125 50 63 70 75 90 125 50 63 70 75 90 125 50 63 75 90 125 50 63 75 90 125 50 63 75 90 125 50 63 75 90 125 50 63 75 90 125 50 63 75 90 125 50 63 75 90 125 125 125 125 125 125 125 125	9.18 103.3 107.37 Size 2.15 4.01 9.18 26.8 103 24.0024.061_Nstd#f_04.\$is Volume % < 4 8.51 31.3 52.6 63.5 65 69.6 73.8 83.5 85.7 86.6 85.7 86.6 85.7 86.6 87.2 88.7 92.2 97.9 99.1 99.96 100 100 100

100 100 100

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 001 Hynne#1 04.\$I	4\Rådata\202400 s	024\24.0024 del1(2)\24.0024_001_Hynne#1_04.\$Is
File ID:	24.0024_001_Hynne#1		
Sample ID:	24.0024 Hynne 40107		
Operator:	geolab		
Run number:	4		
Comment 1:	1438 g + disp.middel, springv	ann	
Comment 2:	vwr ultralydbad USCt300, 5m	'n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.22%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 9:12	Run length:	60 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 002 Minn#1 04.\$Is	4\Rådata\20240()24\24.0024 del1(2)\24.0024_002_Minn#1_04.\$Is					
File ID:	24.0024_002_Minn#1							
Sample ID:	24.0024_Minn							
Operator:	geolab							
Run number:	4							
Comment 1:	0.3184g + disp.middel, Spring	gvann						
Comment 2:	vwr Ultralydbad USCt300, 5 n	nin						
Optical model:	Fraunhofer.rf780d							
Residual:	0.11%							
LS 13 320	Aqueous Liquid Module							
Start time:	2024-07-08 9:30	Run length:	60 seconds					
Pump speed:	45							
Obscuration:	10%							
Fluid:	Water							
Software:	6.01	Firmware:	4.00					

Volume Statistics (A	rithmetic)	24.0024_002	
Calculations from 0.3	375 µm to 2000 µm		
Volume: Mean: Median: D(3,2): Mean/Median ratio: Mode: Specific Surf Area:	100% 70.98 μm 44.33 μm 12.93 μm 1.601 60.53 μm 4641 cm ² /ml	S.D.: Variance: C.V.: Skewness: Kurtosis:	99.78 μm 9957 μm ² 141% 4.287 Right skewed 23.97 Leptokurtic
d ₁₀ : 6.673 μm <10% <25%	d ₅₀ : 44.3: <50%	3 μm <75%	d ₉₀ : 146.1 μm <90%
6.673 µm 18.82	μm 44.33 μm	83.65 µm	146.1 μm

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 003 Tana#1 04.\$ls	4\Rådata\202400)24\24.0024 del1(2)\24.0024_003_Tana#1_04.\$ls					
File ID:	24.0024_003_Tana#1_							
Sample ID:	24.0024_Tana_boks4(3/044)							
Operator:	geolab							
Run number:	4							
Comment 1:	0.1355g + disp.middel, Spring	jvann						
Comment 2:	vwr Ultralydbad USCt300, 5 n	nin						
Optical model:	Fraunhofer.rf780d							
Residual:	0.19%							
LS 13 320	Aqueous Liquid Module							
Start time:	2024-07-08 13:47	Run length:	60 seconds					
Pump speed:	45							
Obscuration:	8%							
Fluid:	Water							
Software:	6.01	Firmware:	4.00					

Volume Statistics (Arithmetic)	24.0024_003_Tana#1_04.\$Is					
Calculations from ().375 μm to 2000 μm						
Volume: Mean: Median: D(3,2): Mean/Median ratio Mode:	100% 38.00 μm 15.71 μm 3.787 μm 2.418 96.50 μm	S.D.: Variance: C.V.: Skewness: Kurtosis:	47.54 μm 2261 μm ² 125% 1.595 Right skewed 2.077 Leptokurtic				
Specific Surf. Area d ₁₀ : 1.142 μm	15842 cm²/mL d ₅₀ : 15.7	1 µm	d ₉₀ : 110.2 μm				
<10% <25 ⁰ 1.142 μm 3.56	% <50% 7 μm 15.71 μm	<75% 58.63 µm	<90% 110.2 μm				

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 004 Hynne2023#1	4\Rådata\20240(04.\$Is	024\24.0024 del1(2)\24.0024_004_Hynne2023#1_04.\$ls						
File ID:	24.0024_004_Hynne2023#1	24.0024_004_Hynne2023#1							
Sample ID:	24.0024_2023_Hynne2023_splitt11								
Operator:	geolab								
Run number:	4								
Comment 1:	0.1455g + disp.middel, spring	gvann							
Comment 2:	vwr ultralydbad USCt300, 5m	in							
Optical model:	Leire-1-65.rf780d								
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099						
Residual:	0.19%								
LS 13 320	Aqueous Liquid Module								
Start time:	2024-07-08 14:13	Run length:	60 seconds						
Pump speed:	45								
Obscuration:	9%								
Fluid:	Water								
Software:	6.01	Firmware:	4.00						

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024_005_Nstd#1_04.\$Is	4\Rådata\202400	024\24.0024 del1(2)\24.0024_005_Nstd#1_04.\$ls					
File ID:	24.0024_005_Nstd#1							
Sample ID:	24.0024_2023_Nstd_splitt5							
Operator:	geolab							
Run number:	4							
Comment 1:	0.1330g + disp.middel, spring	jvann						
Comment 2:	vwr ultralydbad USCt300, 5m	n						
Optical model:	Leire-1-65.rf780d							
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099					
Residual:	0.26%							
LS 13 320	Aqueous Liquid Module							
Start time:	2024-07-08 14:35	Run length:	60 seconds					
Pump speed:	45							
Obscuration:	11%							
Fluid:	Water							
Software:	6.01	Firmware:	4.00					

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_006#1_04.\$ls 24.0024_006#1_04.\$ls							
File ID:	24.0024_006#1							
Sample ID:	24.0024_190118_R3188MC05_0-1cm							
Operator:	geolab							
Run number:	4							
Comment 1:	0.1090g + disp.middel, spring	jvann						
Comment 2:	vwr ultralydbad USCt300, 5mi	n						
Optical model:	Leire-1-65.rf780d							
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099					
Residual:	0.33%							
LS 13 320	Aqueous Liquid Module							
Start time:	2024-07-08 9:48	Run length:	60 seconds					
Pump speed:	45							
Obscuration:	10%							
Fluid:	Water							
Software:	6.01	Firmware:	4.00					

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_007#1_04.\$ls 24.0024_007#1_04.\$ls		
File ID:	24.0024_007#1		
Sample ID:	24.0024_190303_R3190MC0	9A_0-1cm	
Operator:	geolab	_	
Run number:	- 4		
Comment 1:	0.1292g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.28%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 10:01	Run length:	60 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_008#1_04.\$ls 24.0024_008#1_04.\$ls		
File ID:	24.0024_008#1		
Sample ID:	24.0024_190169_R3196MC0	6_0-1cm	
Operator:	geolab	—	
Run number:	- 4		
Comment 1:	0.1303g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.37%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 10:12	Run length:	60 seconds
Pump speed:	45		
Obscuration:	9%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_009#1_04.\$ls 24.0024_009#1_04.\$ls		
File ID:	24.0024_009#1		
Sample ID:	24.0024_190223_R3200MC0	7A_0-1cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.1220g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.30%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 10:26	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_010#1_04.\$ls 24.0024_010#1_04.\$ls		
File ID:	24.0024 010#1		
Sample ID:	24.0024_190225_R3200MC0	7A_2-3cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.1193g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.31%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 10:39	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_011#1_04.\$ls 24.0024_011#1_04.\$ls		
File ID:	24.0024 011#1		
Sample ID:	24.0024_190227_R3200MC0	7A_4-5cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0968g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.30%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 11:14	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_012#1_04.\$ls 24.0024_012#1_04.\$ls		
File ID:	24.0024_012#1		
Sample ID:	24.0024_190232_R3200MC0	7A_9-10cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0935g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5mi	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.28%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 11:34	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_013#1_05.\$ls 24.0024_013#1_05.\$ls		
File ID:	24.0024 013#1		
Sample ID:	24.0024_190237_R3200MC0	7A_14-15cm	
Operator:	geolab	_	
Run number:	5		
Comment 1:	0.0845g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5m	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.29%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 12:12	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_014#1_04.\$ls 24.0024_014#1_04.\$ls		
File ID:	24.0024_014#1		
Sample ID:	24.0024_190247_R3200MC0	7A_24-25cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0924g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5m	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.36%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 12:27	Run length:	60 seconds
Pump speed:	45		
Obscuration:	9%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_015#1_04.\$ls 24.0024_015#1_04.\$ls		
File ID:	24.0024_015#1		
Sample ID:	24.0024_190269_R3200MC0	7A_46-47cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0926g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5m	in	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.31%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 12:38	Run length:	60 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_016#1_04.\$ls 24.0024_016#1_04.\$ls		
File ID:	24.0024_016#1		
Sample ID:	24.0024_190274_R3224MC0	8A_0-1cm	
Operator:	geolab	_	
Run number:	- 4		
Comment 1:	0.3452g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.41%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 13:08	Run length:	60 seconds
Pump speed:	45		
Obscuration:	8%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del1(2)\24.0024_017#1_04.\$ls 24.0024_017#1_04.\$ls		
File ID:	24.0024_017#1		
Sample ID:	24.0024_190348_R3303MC0	10A_0-1cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0953g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.19%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-08 13:21	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_018_Hynne#1_04.\$ls 24.0024_018_Hynne#1_04.\$ls		
File ID:	24.0024_018_Hynne#1		
Sample ID:	24.0024 Hynne 40107		
Operator:	geolab		
Run number:	4		
Comment 1:	0.1399g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.24%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 8:45	Run length:	60 seconds
Pump speed:	45		
Obscuration:	9%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 019 Minn#1 04.\$Is	4\Rådata\202400	024\24.0024 del2(2)\24.0024_019_Minn#1_04.\$Is
File ID:	24.0024_019_Minn#1_		
Sample ID:	24.0024_Minn		
Operator:	geolab		
Run number:	4		
Comment 1:	0.3202g + disp.middel, Spring	jvann	
Comment 2:	vwr Ultralydbad USCt300, 5 n	nin	
Optical model:	Fraunhofer.rf780d		
Residual:	0.16%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 8:20	Run length:	61 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

Volume Statistics (Ar	ithmetic)	24.0024_019	9_Minn#1_04.\$Is
Calculations from 0.3	375 μm to 2000 μm		
Volume: Mean: Median: D(3,2): Mean/Median ratio: Mode: Specific Surf. Area:	100% 72.69 μm 46.96 μm 13.56 μm 1.548 66.45 μm 4426 cm ² /mL	S.D.: Variance: C.V.: Skewness: Kurtosis:	98.30 μm 9663 μm ² 135% 4.355 Right skewed 25.51 Leptokurtic
d ₁₀ : 7.078 μm	d ₅₀ : 46.9	6 µm	d ₉₀ : 153.1 μm
<10% <25% 7.078 µm 19.93	<50% μm 46.96 μm	<75% 87.85 μm	<90% 153.1 μm

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 020 Tana#1 04.\$ls	4\Rådata\20240()24\24.0024 del2(2)\24.0024_020_Tana#1_04.\$Is
File ID:	24.0024_020_Tana#1_		
Sample ID:	24.0024_Tana_boks4(3/044)		
Operator:	geolab		
Run number:	4		
Comment 1:	0.1372g + disp.middel, Spring	gvann	
Comment 2:	vwr Ultralydbad USCt300, 5 m	nin	
Optical model:	Fraunhofer.rf780d		
Residual:	0.19%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 14:04	Run length:	60 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

Calculations from 0.3	375 µm to 2000 µm	I	
Volume:	100%		
Mean:	36.87 µm	S.D.:	46.61 µm
Median:	15.24 µm	Variance:	2173 µm²
D(3,2):	3.716 µm	C.V.:	126%
Mean/Median ratio:	2.419	Skewness:	1.663 Right skewed
Mode:	87.90 µm	Kurtosis:	2.415 Leptokurtic
Specific Surf. Area:	16146 cm²/mL		·
1 1 1 0 0			100.0

 Mean/Median ratio: 2.419 Skewness: 1.663 Right skewed

 Mode:
 87.90 µm
 Kurtosis: 2.415 Leptokurtic

 Specific Surf. Area:
 16146 cm²/mL

 d_{10} :
 1.120 µm
 d_{50} :

 15.24 µm
 d_{90} :
 106.9 µm

 <10%</td>
 <25%</td>
 <50%</td>
 <75%</td>

 1.120 µm
 3.469 µm
 15.24 µm
 106.9 µm

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 021 Hynne2023#1	4\Rådata∖202400 04.\$Is)24\24.0024 del2(2)\24.0024_021_Hynne2023#1_04.\$ls	
File ID:	24.0024_021_Hynne2023#1	24.0024_021_Hynne2023#1		
Sample ID:	24.0024 Hynne2023 splitt11			
Operator:	geolab			
Run number:	4			
Comment 1:	0.1404g + disp.middel, springvann			
Comment 2:	vwr ultralydbad USCt300, 5m	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.22%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 14:17	Run length:	60 seconds	
Pump speed:	45	-		
Obscuration:	10%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 022 Nstd#1 04.\$ls	4\Rådata\202400	24\24.0024 del2(2)\24.0024_022_Nstd#1_04.\$ls
File ID:	24.0024_022_Nstd#1_		
Sample ID:	24.0024_Nstd_splitt5		
Operator:	geolab		
Run number:	4		
Comment 1:	0.1320g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.28%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 14:30	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_023#1_04.\$ls 24.0024_023#1_04.\$ls		
File ID:	24.0024 023#1		
Sample ID:	24.0024_190406_R3310MC1	1A_0-1cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0850g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5mi	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.28%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 9:31	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_023#1_04.\$ls 24.0024_023#1_04.\$ls			
File ID:	24.0024_023#1	24.0024_023#1		
Sample ID:	24.0024_190406_R3310MC1	1A_0-1cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0850g + disp.middel, spring	gvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.28%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 9:31	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_025#1_04.\$ls 24.0024_025#1_04.\$ls			
File ID:	24.0024 025#1			
Sample ID:	24.0024_190410_R3310MC1	1A_4-5cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0924g + disp.middel, springvann			
Comment 2:	vwr ultralydbad USCt300, 5m	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.25%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 9:55	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	11%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_026#1_04.\$ls 24.0024_026#1_04.\$ls		
File ID:	24.0024_026#1		
Sample ID:	24.0024_190415_R3310MC1	1A_9-10cm	
Operator:	geolab		
Run number:	4		
Comment 1:	0.0964g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5m	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.28%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 10:07	Run length:	62 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_027#1_04.\$ls 24.0024_027#1_04.\$ls		
File ID:	24.0024_027#1		
Sample ID:	24.0024_190420_R3310MC1	1A_14-15cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0871g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5m	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.27%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 10:28	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_028#1_04.\$ls 24.0024_028#1_04.\$ls		
File ID:	24.0024 028#1		
Sample ID:	24.0024_190430_R3310MC1	1A_24-25cm	
Operator:	geolab	—	
Run number:	4		
Comment 1:	0.0941g + disp.middel, spring	gvann	
Comment 2:	vwr ultralydbad USCt300, 5m	in	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.25%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 10:41	Run length:	61 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_029#1_04.\$ls 24.0024_029#1_04.\$ls		
File ID:	24.0024_029#1		
Sample ID:	24.0024_190452_R3310MC11A_46-47cm		
Operator:	geolab		
Run number:	4		
Comment 1:	0.0764g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.34%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 11:09	Run length:	61 seconds
Pump speed:	45		
Obscuration:	9%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_030#1_04.\$ls 24.0024_030#1_04.\$ls		
File ID:	24.0024_030#1		
Sample ID:	24.0024_190456_R3328MC12A_0-1cm		
Operator:	geolab		
Run number:	4		
Comment 1:	0.0760g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.24%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 12:17	Run length:	61 seconds
Pump speed:	45		
Obscuration:	9%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_031#1_04.\$ls 24.0024_031#1_04.\$ls		
File ID:	24.0024_031#1		
Sample ID:	24.0024 190458 R3328MC12A 2-3cm		
Operator:	geolab		
Run number:	4		
Comment 1:	0.0915g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.26%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 12:30	Run length:	60 seconds
Pump speed:	45		
Obscuration:	10%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_032#1_04.\$ls 24.0024_032#1_04.\$ls		
File ID:	24.0024_032#1		
Sample ID:	24.0024_190460_R3328MC12A_4-5cm		
Operator:	geolab		
Run number:	4		
Comment 1:	0.0980g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.24%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-09 12:44	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_033#1_04.\$ls 24.0024_033#1_04.\$ls				
File ID:	24.0024_033#1	24.0024_033#1			
Sample ID:	24.0024_190465_R3328MC1	2A_9-10cm			
Operator:	geolab	—			
Run number:	4				
Comment 1:	0.0913g + disp.middel, spring	gvann			
Comment 2:	vwr ultralydbad USCt300, 5m	in			
Optical model:	Leire-1-65.rf780d				
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099		
Residual:	0.23%				
LS 13 320	Aqueous Liquid Module				
Start time:	2024-07-09 12:56	Run length:	60 seconds		
Pump speed:	45				
Obscuration:	11%				
Fluid:	Water				
Software:	6.01	Firmware:	4.00		

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_034#1_04.\$ls 24.0024_034#1_04.\$ls			
File ID:	24.0024_034#1			
Sample ID:	24.0024_190470_R3328MC1	2A_14-15cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0927g + disp.middel, spring	gvann		
Comment 2:	vwr ultralydbad USCt300, 5m	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.23%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 13:11	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	9%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_035#1_04.\$ls 24.0024_035#1_04.\$ls			
File ID:	24.0024_035#1			
Sample ID:	24.0024_190480_R3328MC1	2A_24-25cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0959g + disp.middel, spring	gvann		
Comment 2:	vwr ultralydbad USCt300, 5m	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.24%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 13:25	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	11%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del2(2)\24.0024_036#1_04.\$ls 24.0024_036#1_04.\$ls			
File ID:	24.0024_036#1			
Sample ID:	24.0024_190502_R3328MC1	2A_46-47cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0930g + disp.middel, spring	jvann		
Comment 2:	vwr ultralydbad USCt300, 5m	n		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.24%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-09 13:37	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_037_Hynne#1_03.\$ls 24.0024 037 Hynne#1 03.\$ls			
File ID:	24.0024_037_Hynne#1_			
Sample ID:	24.0024 Hynne 40107			
Operator:	geolab			
Run number:	3			
Comment 1:	0.1500g + disp.middel, spring	gvann		
Comment 2:	vwr ultralydbad USCt300, 5m	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.32%	-		
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 9:31	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	9%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 038 Minn#1 04.\$Is	4\Rådata\20240()24\24.0024 del3-A(2)\24.0024_038_Minn#1_04.\$Is	
File ID:	24.0024_038_Minn#1			
Sample ID:	24.0024_Minn			
Operator:	geolab			
Run number:	4			
Comment 1:	0.3237g + disp.middel, Springvann			
Comment 2:	vwr Ultralydbad USCt300, 5 m	nin		
Optical model:	Fraunhofer.rf780d			
Residual:	0.15%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 9:12	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	10%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

Volume Statistics (Arithmetic)		24.0024_038_Minn#1_04.\$Is		
Calculations from 0.	375 µm to 2000 µm			
Volume: Mean: Median: D(3,2): Mean/Median ratio: Mode: Specific Surf. Area:	100% 60.28 μm 45.30 μm 13.16 μm 1.331 60.53 μm 4560 cm ² /mL	S.D.: Variance: C.V.: Skewness: Kurtosis:	56.12 μm 3149 μm ² 93.1% 1.710 Right skewed 3.499 Leptokurtic	
d ₁₀ : 6.896 µm	d ₅₀ : 45.3	0 µm	d ₉₀ : 132.5 μm	
<10% <25% 6.896 µm 19.54	<50% μm 45.30 μm	<75% 82.24 µm	<90% 132.5 μm	

File name:	N:\Lab\Korn\Coulter\Data\202	4\Rådata\202400)24\24.0024 del3-A(2)\24.0024 039 Tana#1 04.\$ls	
	24.0024 039 Tana#1 04.\$ls			
File ID:	24.0024_039_Tana#1			
Sample ID:	24.0024_Tana_boks4(3/044)			
Operator:	geolab			
Run number:	4			
Comment 1:	0.1395g + disp.middel, Springvann			
Comment 2:	vwr Ultralydbad USCt300, 5 n	nin		
Optical model:	Fraunhofer.rf780d			
Residual:	0.25%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 11:52	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	9%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

Volume Statistics (A	rithmetic)	24.0024_039	9_Tana#1_04.\$Is
Calculations from 0.	375 µm to 2000 µm		
Volume: Mean: Median: D(3,2): Mean/Median ratio: Mode: Specific Surf. Area:	100% 35.54 μm 14.54 μm 3.659 μm 2.445 87.90 μm 16396 cm ² /mL	S.D.: Variance: C.V.: Skewness: Kurtosis:	44.71 μm 1999 μm ² 126% 1.596 Right skewed 2.010 Leptokurtic
d ₁₀ : 1.107 µm	d ₅₀ : 14.5	4 µm	d ₉₀ : 104.9 μm
<10% <25% 1.107 μm 3.375	<50% μm 14.54 μm	<75% 53.93 μm	<90% 104.9 μm

File name:	N:\Lab\Korn\Coulter\Data\202 24 0024 040 Hyppe2023#1	4\Rådata\20240	024\24.0024 del3-A(2)\24.0024_040_Hynne2023#1_04.\$		
File ID:	24.0024 040 Hvnne2023#1				
Sample ID:	24.0024 Hynne2023 splitt11				
Operator:	geolab				
Run number:	4				
Comment 1:	0.1360 g + disp.middel, spring	0.1360 g + disp.middel, springvann			
Comment 2:	vwr ultralydbad USCt300, 5m	in			
Optical model:	Leire-1-65.rf780d				
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099		
Residual:	0.23%	-			
LS 13 320	Aqueous Liquid Module				
Start time:	2024-07-10 12:05	Run length:	60 seconds		
Pump speed:	45				
Obscuration:	9%				
Fluid:	Water				
Software:	6.01	Firmware:	4.00		

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_041_Nstd#1_04.\$ls 24.0024_041_Nstd#1_04.\$ls			
File ID:	24.0024_041_Nstd#1			
Sample ID:	24.0024_Nstd_splitt5			
Operator:	geolab			
Run number:	4			
Comment 1:	0.1367 g + disp.middel, springvann			
Comment 2:	vwr ultralydbad USCt300, 5m	in		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.25%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 12:15	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_042#1_04.\$ls 24.0024_042#1_04.\$ls			
File ID:	24.0024 042#1			
Sample ID:	24.0024_190508_R3333MC1	3A_0-1cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0808g + disp.middel, spring	jvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	n		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.25%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 9:51	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_043#1_04.\$ls 24.0024_043#1_04.\$ls			
File ID:	24.0024 043#1			
Sample ID:	24.0024_190558_R3345MC1	4A_0-1cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0840g + disp.middel, spring	0.0840g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5min			
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.26%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 10:16	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_044#1_04.\$ls 24.0024_044#1_04.\$ls		
File ID:	24.0024 044#1		
Sample ID:	24.0024_190560_R3345MC1	4A_2-3cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0848g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5mi	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.27%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-10 10:29	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_045#1_04.\$ls 24.0024_045#1_04.\$ls			
File ID:	24.0024_045#1			
Sample ID:	24.0024_190562_R3345MC1	4A_4-5cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0839g + disp.middel, spring	jvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.23%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 10:40	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	11%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_046#1_04.\$ls 24.0024_046#1_04.\$ls			
File ID:	24.0024_046#1			
Sample ID:	24.0024_190567_R3345MC1	4A_9-10cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0866 g + disp.middel, spring	gvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.26%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 11:02	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	10%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_047#1_04.\$ls 24.0024_047#1_04.\$ls			
File ID:	24.0024 047#1			
Sample ID:	24.0024_190572_R3345MC1	4A_14-15cm		
Operator:	geolab			
Run number:	4	4		
Comment 1:	0.0849 g + disp.middel, spring	jvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	n		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.26%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-10 11:15	Run length:	66 seconds	
Pump speed:	45			
Obscuration:	10%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_048#1_04.\$ls 24.0024_048#1_04.\$ls		
File ID:	24.0024 048#1		
Sample ID:	24.0024_190582_R3345MC1	4A_24-25cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0890 g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5mi	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.24%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-10 11:28	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-A(2)\24.0024_049#1_04.\$ls 24.0024_049#1_04.\$ls		
File ID:	24.0024_049#1		
Sample ID:	24.0024_190600_R3345MC1	4A_42-43cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0844 g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5m	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.27%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-10 11:39	Run length:	60 seconds
Pump speed:	45		
Obscuration:	11%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_050#1_04.\$ls 24.0024_050#1_04.\$ls			
File ID:	24.0024_050#1_			
Sample ID:	24.0024_190613_R3365MC1	5A_0-1cm		
Operator:	geolab	_		
Run number:	4	4		
Comment 1:	0.0935g + disp.middel, spring	0.0935g + disp.middel, springvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.24%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-11 8:24	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	11%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_051#1_04.\$ls 24.0024_051#1_04.\$ls			
File ID:	24.0024_051#1			
Sample ID:	24.0024_190615_R3365MC1	5A_2-3cm		
Operator:	geolab	_		
Run number:	- Ă			
Comment 1:	0.0985g + disp.middel, springvann			
Comment 2:	vwr ultralydbad USCt300, 5mi	vwr ultralydbad USCt300, 5min		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.25%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-11 8:37	Run length:	60 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_052#1_04.\$ls 24.0024_052#1_04.\$ls		
File ID:	24.0024_052#1		
Sample ID:	24.0024_190617_R3365MC1	5A_4-5cm	
Operator:	geolab		
Run number:	4		
Comment 1:	0.0952g + disp.middel, spring	jvann	
Comment 2:	vwr ultralydbad USCt300, 5mi	n	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.22%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-11 8:54	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_053#1_04.\$ls 24.0024_053#1_04.\$ls			
File ID:	24.0024_053#1	24.0024_053#1		
Sample ID:	24.0024_190622_R3365MC1	5A_9-10cm		
Operator:	geolab	_		
Run number:	4			
Comment 1:	0.0985g + disp.middel, spring	jvann		
Comment 2:	vwr ultralydbad USCt300, 5mi	n		
Optical model:	Leire-1-65.rf780d			
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099	
Residual:	0.22%			
LS 13 320	Aqueous Liquid Module			
Start time:	2024-07-11 9:05	Run length:	61 seconds	
Pump speed:	45			
Obscuration:	12%			
Fluid:	Water			
Software:	6.01	Firmware:	4.00	

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_054#1_04.\$ls 24.0024_054#1_04.\$ls		
File ID:	24.0024_054#1		
Sample ID:	24.0024_190627_R3365MC1	5A_14-15cm	
Operator:	geolab	_	
Run number:	4		
Comment 1:	0.0992g + disp.middel, spring	gvann	
Comment 2:	vwr ultralydbad USCt300, 5m	in	
Optical model:	Leire-1-65.rf780d		
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099
Residual:	0.23%		
LS 13 320	Aqueous Liquid Module		
Start time:	2024-07-11 9:25	Run length:	60 seconds
Pump speed:	45		
Obscuration:	12%		
Fluid:	Water		
Software:	6.01	Firmware:	4.00

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_055#1_04.\$ls 24.0024_055#1_04.\$ls						
File ID:	24.0024_055#1						
Sample ID:	24.0024_190637_R3365MC1	5A_24-25cm					
Operator:	geolab	_					
Run number:	4						
Comment 1:	0.0898g + disp.middel, spring	jvann					
Comment 2:	vwr ultralydbad USCt300, 5mi	n					
Optical model:	Leire-1-65.rf780d						
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099				
Residual:	0.25%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 10:30	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	12%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_056#1_04.\$ls 24.0024_056#1_04.\$ls						
File ID:	24.0024_056#1						
Sample ID:	24.0024_190659_R3365MC1	5A_46-47cm					
Operator:	geolab	_					
Run number:	4						
Comment 1:	0.0830g + disp.middel, spring	jvann					
Comment 2:	vwr ultralydbad USCt300, 5mi	n					
Optical model:	Leire-1-65.rf780d						
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099				
Residual:	0.21%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 10:53	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	10%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_057_Hynne#1_04.\$ls 24.0024 057 Hynne#1 04.\$ls						
File ID:	24.0024_057_Hynne#1						
Sample ID:	24.0024_Hynne_40107						
Operator:	geolab						
Run number:	4						
Comment 1:	0.1425g + disp.middel, spring	gvann					
Comment 2:	vwr ultralydbad USCt300, 5m	in					
Optical model:	Leire-1-65.rf780d						
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099				
Residual:	0.22%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 8:11	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	11%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024 058 Minn#1 03.\$Is	4\Rådata\202400)24\24.0024 del3-B(2)\24.0024_058_Minn#1_03.\$Is				
File ID:	24.0024_058_Minn#1						
Sample ID:	24.0024_Minn						
Operator:	geolab						
Run number:	3						
Comment 1:	0.3202g + disp.middel, Springvann						
Comment 2:	vwr Ultralydbad USCt300, 5 min						
Optical model:	Fraunhofer.rf780d						
Residual:	0.17%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 7:46	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	10%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

Volume Statistics (A	withmetic)	24.0024_058	3_Minn#1_03.\$Is
Calculations from 0	.375 μm to 2000 μm		
Volume:	100%		
Mean:	61.67 µm	S.D.:	59.11 µm
Median:	45.26 µm	Variance:	3494 µm ²
D(3,2):	13.05 µm	C.V.:	95.8%
Mean/Median ratio:	1.362	Skewness:	1.765 Right skewed
Mode:	60.53 µm	Kurtosis:	3.614 Leptokurtic
Specific Surf. Area:	4599 cm ² /mL		
d ₁₀ : 6.759 µm	d ₅₀ : 45.2	6 µm	d ₉₀ : 137.7 μm
<10% <25%	s <50%	<75%	<90%
6.759 μm 19.18	3 μm 45.26 μm	83.42 µm	137.7 μm

File name:	N:\Lab\Korn\Coulter\Data\202 24.0024_059_Tana#1_04.\$Is	4\Rådata\202400	024\24.0024 del3-B(2)\24.0024_059_Tana#1_04.\$Is				
File ID:	24.0024_059_Tana#1						
Sample ID:	24.0024_Tana_boks4(3/044)						
Operator:	geolab						
Run number:	4						
Comment 1:	0.1401g + disp.middel, Spring	gvann					
Comment 2:	vwr Ultralydbad USCt300, 5 min						
Optical model:	Fraunhofer.rf780d						
Residual:	0.22%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 11:36	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	11%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

Volume Statistics (Arithmetic)	24.0024_059	9_Tana#1_04.\$Is
Calculations from (.375 μm to 2000 μm		
Volume: Mean: Median: D(3,2): Mean/Median ratio Mode: Specific Surf. Area	100% 35.66 μm 13.94 μm 3.561 μm 2.558 87.90 μm 16851 cm ² /mL	S.D.: Variance: C.V.: Skewness: Kurtosis:	46.05 μm 2120 μm ² 129% 1.736 Right skewed 2.879 Leptokurtic
d ₁₀ : 1.073 μm	d ₅₀ : 13.9	4 µm	d ₉₀ : 105.4 μm
<10% <25 ⁰ 1.073 µm 3.23	% <50% 9 μm 13.94 μm	<75% 53.56 μm	<90% 105.4 μm

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_060_Hynne2023#1_08.						
File ID:	24.0024_060_Hvnne2023#1						
Sample ID:	24.0024 Hynne2023 splitt11						
Operator:	geolab						
Run number:	8						
Comment 1:	0.1452g + disp.middel, springvann						
Comment 2:	vwr ultralydbad USCt300, 5min						
Optical model:	Leire-1-65.rf780d						
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099				
Residual:	0.21%						
LS 13 320	Aqueous Liquid Module						
Start time:	2024-07-11 11:12	Run length:	60 seconds				
Pump speed:	45						
Obscuration:	11%						
Fluid:	Water						
Software:	6.01	Firmware:	4.00				

File name:	N:\Lab\Korn\Coulter\Data\2024\Rådata\20240024\24.0024 del3-B(2)\24.0024_061_Nstd#1_04.\$ls 24.0024_061_Nstd#1_04.\$ls							
File ID:	24.0024_061_Nstd#1							
Sample ID:	24.0024_Nstd_splitt5							
Operator:	geolab							
Run number:	4							
Comment 1:	0.1350g + disp.middel, spring	jvann						
Comment 2:	vwr ultralydbad USCt300, 5m	n						
Optical model:	Leire-1-65.rf780d							
Fluid R.I.:	1.333	Sample R.I.:	1.65 i0.0099					
Residual:	0.25%							
LS 13 320	Aqueous Liquid Module							
Start time:	2024-07-11 11:25	Run length:	60 seconds					
Pump speed:	45							
Obscuration:	12%							
Fluid:	Water							
Software:	6.01	Firmware:	4.00					

NGU-rapport 2024.027

Vedlegg 2

¹³⁷Cs aktivitet og ²¹⁰Pb datering av 4 sedimentkjerner:R3200MC07A; R3310MC11A; R3328MC12A; R3365MC15A

Leverandør av data: Gamma Dating Center (GDC), Københavns Universitet, Danmark

Gamma Dating Center Copenhagen

Copenhagen, October 14th, 2024

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core R3200MC07A

Dating of core R3200MC07A

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported ²¹⁰Pb of around 100 Bq kg⁻¹ with a clear tendency for exponential with depth (fig 1) but low levels were reached already at a depth of 5 cm. The calculated flux of unsupported ²¹⁰Pb is only 38 m⁻² y⁻¹ which is only about a quarter of the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to periods of non-deposition or erosion.

The content of the isotope ¹³⁷Cs was low and the content of the isotope was at or below detection limits at depths deeper than 2 cm.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 8 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated.

The exponential decline in unsupported ²¹⁰Pb gives some confidence in the chronology but ¹³⁷Cs is only found in layers dated to after around year 2000 which is younger than expected. The low flux of unsupported ²¹⁰Pb indicates that the site could be subject to periods of non-deposition or erosion and the chronology should therefore only be interpreted as indicative.

Thorbjørn J. Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-	error Pb-	Pb-210	error pb-	Pb-210	error pb-	Cs-137	error Cs-
	210tot	210 tot	sup	210 sup	unsup	210 unsup		137
cm	Bq kg-1	Bq kg-1						
0.5	114	10	16	6	98	17	7	3
1.5	103	9	19	3	84	12	6	2
2.5	74	7	24	2	50	9	0	0
3.5	56	6	21	2	35	8	2	2
4.5	21	3	19	5	2	8	0	0
5.5	32	3	23	3	9	7	0	0
6.5	31	4	25	2	6	6	0	0
7.5	14	2	24	1	1	4	2	2
8.5	16	2	19	2	1	4	0	0
9.5	13	2	27	3	1	5	0	0
10.5	27	4	17	3	10	6	2	2
11.5	22	3	17	1	5	4	0	0

Table 1. Radiometric data, R3200MC07A

Table 2, chronology core, R3200MC07A

Depth	Age	error	Date	acc rate	error rate
		age			
cm	у	у	У	kg m-2 y-1	kg m-2 y-1
			2023		
0.5	5	3	2018	0.36	0.06
1.5	19	4	2004	0.29	0.05
2.5	38	7	1985	0.24	0.06
3.5	61	12	1962	0.20	0.09
4.5	83	21	1940	0.23	0.88
5.5	94	23	1929	0.47	0.42
6.5	121	41	1902	0.19	0.27

Fig 1. Radiometric data

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Fig 3. Age-depth figure

Fig 4. ¹³⁷Cs profile as dated by ²¹⁰Pb-dating

Gamma Dating Center Copenhagen

Copenhagen, October 14th, 2024

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core R3310MC11A
Dating of core R3310MC11A

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported 210 Pb of around 250 Bq kg⁻¹ with a clear tendency for exponential with depth (fig 1).

The calculated flux of unsupported 210 Pb is 408 m⁻² y⁻¹ which is about three times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sedimentation.

The content of the isotope ¹³⁷Cs was low and the content of the isotope was relatively low but present to depths of at least 20 cm.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 26 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated.

The exponential decline in unsupported ²¹⁰Pb gives some confidence in the chronology but ¹³⁷Cs is found in layers dated to well before the initial release into nature in the 1950's. This indicates that some sediment mixing is taking place and the chronology should therefore only be interpreted as indicative.

Thorbjørn J. Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-	error	Pb-210	error pb-	Pb-210	error pb-	Cs-137	error Cs-
-	210tot	Pb-210	sup	210 sup	unsup	210 unsup		137
		tot		_	_	_		
cm	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1
0.5	254	20	21	10	233	30	0	0
1.5	258	23	21	7	237	30	0	0
2.5	304	18	31	7	273	25	7	2
4.5	279	16	35	3	244	19	3	2
6.5	239	21	34	9	205	30	17	4
8.5	217	16	31	2	186	18	10	3
10.5	190	15	40	7	151	22	8	3
12.5	182	9	29	0	152	9	9	1
13.5	174	14	27	9	147	23	10	3
15.5	115	10	19	0	96	10	11	2
17.5	80	8	30	8	51	16	7	2
19.5	51	6	27	1	25	6	7	2
20.5	50	5	27	2	23	7	4	2
21.5	32	4	28	3	4	7	3	2
22.5	50	6	31	0	19	6	0	0
25.5	15	2	24	2	1	4	0	0

Table 1. Radiometric data, R3310MC11A

Table 2, chronology core, R3310MC11A

Depth	Age	error	Date	acc rate	error rate
		age			
cm	У	У	У	kg m-2 y-1	kg m-2 y-1
			2023		
0.5	1	1	2022	1.73	0.23
1.5	3	1	2020	1.64	0.21
2.5	5	1	2018	1.41	0.14
4.5	11	2	2012	1.24	0.11
6.5	17	2	2006	1.18	0.17
8.5	25	2	1998	1.09	0.12
10.5	34	2	1989	0.97	0.14
12.5	46	3	1977	0.78	0.08
13.5	53	3	1970	0.59	0.09
15.5	72	5	1951	0.49	0.08
17.5	91	7	1932	0.45	0.15
19.5	110	8	1913	0.48	0.16
20.5	121	9	1902	0.48	0.19

Fig 1. Radiometric data

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Fig 3. Age-depth figure

Fig 4. ¹³⁷Cs profile as dated by ²¹⁰Pb-dating

Gamma Dating Center Copenhagen

Copenhagen, October 25th, 2024

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core R3328MC12A

Dating of core R3328MC12A

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported 210 Pb of around 280 Bq kg⁻¹ with a tendency for exponential with depth below 10 cm depth but an irregular profile is observed between 22 and 24 cm (fig 1).

The calculated flux of unsupported 210 Pb is 705 m⁻² y⁻¹ which is about five times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sedimentation.

The content of the isotope ¹³⁷Cs was low but with a broad peak centered around 16 cm depth.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 33 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated.

The fairly uniform content of unsupported ²¹⁰Pb in the upper 10 cm indicates that bioturbation is in fact significant. However, the dated profile of ¹³⁷Cs is reasonably consistent with the known history of the release of the isotope into nature (peaks in 1963 and 1986). The calculated chronology should be considered as indicative.

Thorbjørn J. Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-	error Pb-	Pb-210	error pb-	Pb-210	error pb-	Cs-137	error Cs-
_	210tot	210 tot	sup	210 sup	unsup	210 unsup		137
cm	Bq kg-1	Bq kg-1						
0.5	244	22	19	8	225	30	0	0
1.5	298	26	15	6	283	32	0	0
2.5	274	25	32	16	242	40	0	0
3.5	290	14	20	1	270	15	6	2
5.5	291	15	22	3	269	19	5	2
6.5	265	19	29	20	236	39	8	3
8.5	295	20	26	4	269	23	9	3
10.5	233	17	27	1	206	18	8	3
12.5	193	15	18	5	175	20	0	0
14.5	193	15	24	0	169	15	12	3
16.5	141	9	24	2	116	11	13	2
18.5	82	5	23	1	58	6	11	1
20.5	77	5	23	2	54	7	6	1
21.5	81	7	28	1	54	8	8	2
24.5	149	16	22	0	127	16	6	2
28.5	87	9	23	5	64	14	3	3
30.5	35	5	17	2	18	7	0	0
32.5	23	3	19	4	4	7	0	0
40.5	16	2	24	1	1	3	0	0

Table 1. Radiometric data, R3328MC12A

Depth	Age	error	Date	acc rate	error rate
		age			
cm	У	У	У	kg m-2 y-1	kg m-2 y-1
			2023		
0.5	1	1	2022	3.11	0.42
1.5	2	1	2021	2.68	0.31
2.5	3	1	2020	2.48	0.41
3.5	5	1	2018	2.41	0.16
5.5	9	1	2014	2.09	0.17
6.5	12	1	2011	2.01	0.32
8.5	17	2	2006	1.78	0.17
10.5	23	2	2000	1.59	0.15
12.5	29	2	1994	1.65	0.20
14.5	35	2	1988	1.50	0.16
16.5	42	2	1981	1.48	0.17
18.5	47	3	1976	2.00	0.26
20.5	51	3	1972	2.69	0.44
21.5	53	3	1970	2.56	0.43
24.5	67	5	1956	1.21	0.21
28.5	107	13	1916	0.53	0.23

Table 2, chronology core, R3328MC12A

Fig 1. Radiometric data

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Fig 3. Age-depth figure

Fig 4. ¹³⁷Cs profile as dated by ²¹⁰Pb-dating

Gamma Dating Center Copenhagen

Copenhagen, October 14th, 2024

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core R3365MC15A

Dating of core R3365MC15A

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported ²¹⁰Pb of around 150 Bq kg⁻¹ with a tendency for exponential with depth (fig 1) although at a very slow rate.

The calculated flux of unsupported 210 Pb is 1908 m⁻² y⁻¹ which is a least an order of magnitude higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to intense sediment focusing.

The content of the isotope ¹³⁷Cs was low and the content of the isotope was relatively low but increasing with depth.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 51 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated.

The slight exponential decline in unsupported ²¹⁰Pb gives some confidence in the chronology and the calculated chronology of ¹³⁷Cs deposition is also consistent with a slow decrease from peaks in 1963 and possibly 1986. The chronology is therefore considered to be reliable and the site may be a good spot for studies using geochronology – especially if longer cores can be obtained.

Thorbjørn J. Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-	error Pb-	Pb-210	error pb-	Pb-210	error pb-	Cs-137	error Cs-
	210tot	210 tot	sup	210 sup	unsup	210 unsup		137
cm	Bq kg-1	Bq kg-1						
0.5	159	13	18	0	141	13	9	3
2.5	164	15	24	2	140	17	9	5
5.5	224	17	23	5	201	22	5	3
6.5	196	16	26	9	170	24	5	3
10.5	144	12	20	1	124	13	6	3
15.5	162	13	27	9	135	22	10	3
20.5	144	10	20	0	124	10	7	2
25.5	147	13	15	0	132	13	10	5
30.5	147	12	21	4	126	16	11	2
40.5	177	13	26	3	150	16	15	2
45.5	93	7	22	0	72	7	14	1
50.5	89	8	22	1	67	9	20	3

Table 1. Radiometric data, R3365MC15A

Table 2, chronology core, R3365MC15A

Depth	Age	error	Date	acc rate	error rate
	_	age			
cm	у	у	у	kg m-2 y-1	kg m-2 y-1
			2023		
0.5	0	3	2023	13.51	1.86
2.5	1	3	2022	13.41	2.11
5.5	2	3	2021	10.76	1.63
6.5	2	3	2021	9.66	1.69
10.5	4	3	2019	11.86	1.81
15.5	5	4	2018	12.81	2.55
20.5	7	4	2016	12.06	1.78
25.5	10	4	2013	11.45	1.89
30.5	12	4	2011	10.56	1.95
40.5	18	5	2005	8.63	1.73
45.5	21	5	2002	9.34	1.94
50.5	23	6	2000	13.85	2.77

Fig 1. Radiometric data

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Fig 3. Age-depth figure

Fig 4. ¹³⁷Cs profile as dated by ²¹⁰Pb-dating

· NGU ·

Norges geologiske undersøkelse Postboks 6315, Slüppen 7491 Trondheim, Norge

Besøksadresse Leiv Eirikssons vei 39 7040 Trondheim

Telefon 73 90 40 00 E-post ngu@ngu.no Nettside www.ngu.no